Nuprl Lemma : case-term-equal-left

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}]. ∀[v:Top].  Gamma, phi ⊢ (u ∨ v)=u:A


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T same-cubical-term: X ⊢ u=v:A uimplies: supposing a subtype_rel: A ⊆B context-subset: Gamma, phi all: x:A. B[x] case-term: (u ∨ v) cubical-term-at: u(a) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff bdd-distributive-lattice: BoundedDistributiveLattice exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q
Lemmas referenced :  cubical-term-equal context-subset_wf istype-top cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf face-type_wf cubical_set_wf I_cube_pair_redex_lemma I_cube_wf fset_wf nat_wf fl-eq_wf cubical-term-at_wf subset-cubical-term context-subset-is-subset lattice-1_wf face_lattice_wf eqtt_to_assert assert-fl-eq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity independent_isectElimination sqequalRule axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType instantiate applyEquality functionExtensionality dependent_functionElimination Error :memTop,  setElimination rename because_Cache lambdaFormation_alt unionElimination equalityElimination productElimination lambdaEquality_alt dependent_pairFormation_alt equalityIstype promote_hyp cumulativity independent_functionElimination voidElimination productEquality isectEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].  \mforall{}[v:Top].
    Gamma,  phi  \mvdash{}  (u  \mvee{}  v)=u:A



Date html generated: 2020_05_20-PM-03_11_06
Last ObjectModification: 2020_04_06-PM-00_53_41

Theory : cubical!type!theory


Home Index