Nuprl Lemma : fl-eq_wf
∀[I:fset(ℕ)]. ∀[x,y:Point(face_lattice(I))].  ((x==y) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
fl-eq: (x==y)
, 
face_lattice: face_lattice(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
fl-eq: (x==y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
face_lattice: face_lattice(I)
, 
deq: EqDecider(T)
, 
top: Top
, 
cand: A c∧ B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
free-dml-deq_wf, 
names_wf, 
names-deq_wf, 
deq_wf, 
free-DeMorgan-lattice_wf, 
face-lattice_wf, 
free-dist-lattice_wf, 
union-deq_wf, 
assert_wf, 
fset-antichain_wf, 
all_wf, 
fset-member_wf, 
deq-fset_wf, 
not_wf, 
subtype_rel_sets, 
subtype_rel_functionality_wrt_iff, 
fl-point, 
ext-eq_weakening, 
free-dl-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
unionEquality, 
setEquality, 
functionEquality, 
inlEquality, 
inrEquality, 
voidElimination, 
voidEquality, 
productElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x,y:Point(face\_lattice(I))].    ((x==y)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_05-AM-01_10_20
Last ObjectModification:
2017_07_28-AM-09_29_45
Theory : cubical!type!theory
Home
Index