Nuprl Lemma : deq-fset_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (deq-fset(eq) ∈ EqDecider(fset(T)))
Proof
Definitions occuring in Statement : 
deq-fset: deq-fset(eq), 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
deq-fset: deq-fset(eq), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
decidable__equal_fset, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
iff_weakening_uiff, 
decidable__fset-member, 
assert-deq-fset-member, 
decidable__assert, 
fset-all-iff, 
fset-null: fset-null(s), 
null: null(as), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
isl: isl(x), 
decidable__and, 
rev_implies: P ⇐ Q, 
false: False, 
not: ¬A, 
bfalse: ff, 
true: True, 
btrue: tt, 
assert: ↑b, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
prop: ℙ, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
deq: EqDecider(T)
Lemmas referenced : 
deq_wf, 
lifting-strict-spread, 
istype-void, 
strict4-apply, 
lifting-strict-decide, 
strict4-decide, 
iff_wf, 
assert_wf, 
not_wf, 
isl_wf, 
all_wf, 
deq_subtype2, 
fset_wf, 
equal_wf, 
decidable_wf, 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
iff_weakening_uiff, 
decidable__fset-member, 
assert-deq-fset-member, 
decidable__assert, 
fset-all-iff, 
decidable__and
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
functionExtensionality, 
lambdaFormation, 
functionEquality, 
isectEquality, 
instantiate, 
applyEquality, 
lambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (deq-fset(eq)  \mmember{}  EqDecider(fset(T)))
Date html generated:
2019_06_20-PM-01_59_25
Last ObjectModification:
2019_01_17-AM-09_39_28
Theory : finite!sets
Home
Index