Nuprl Lemma : deq_subtype2
∀[T:Type]. (EqDecider(T) ⊆r (∀x,y:T.  Dec(x = y ∈ T)))
Proof
Definitions occuring in Statement : 
deq: EqDecider(T), 
decidable: Dec(P), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
false: False
Lemmas referenced : 
deq_wf, 
bool_wf, 
eqtt_to_assert, 
it_wf, 
equal_subtype, 
equal-wf-base, 
equal_wf, 
false_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
universeEquality, 
sqequalRule, 
functionExtensionality, 
rename, 
because_Cache, 
setElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
inlEquality, 
intEquality, 
natural_numberEquality, 
independent_functionElimination, 
baseClosed, 
functionEquality, 
cumulativity, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
inrEquality
Latex:
\mforall{}[T:Type].  (EqDecider(T)  \msubseteq{}r  (\mforall{}x,y:T.    Dec(x  =  y)))
Date html generated:
2019_06_20-PM-00_31_51
Last ObjectModification:
2018_09_26-PM-00_54_53
Theory : equality!deciders
Home
Index