Nuprl Lemma : unglue-term_wf2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
[b:{Gamma ⊢ _:Glue [phi ⊢→ (T;w)] A}].
  (unglue(b) ∈ {Gamma ⊢ _:A[phi |⟶ app(w; b)]})


Proof




Definitions occuring in Statement :  unglue-term: unglue(b) glue-type: Glue [phi ⊢→ (T;w)] A constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uimplies: supposing a subtype_rel: A ⊆B prop: context-subset: Gamma, phi all: x:A. B[x] unglue-term: unglue(b) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] implies:  Q assert: b ifthenelse: if then else fi  btrue: tt guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True sq_type: SQType(T) cubical-app: app(w; u) cubical-term-at: u(a) same-cubical-type: Gamma ⊢ B
Lemmas referenced :  unglue-term_wf equal_wf thin-context-subset cubical-term-eqcd context-subset_wf context-subset-term-subtype istype-cubical-term glue-type_wf cubical-fun_wf cubical-type_wf face-type_wf cubical_set_wf I_cube_pair_redex_lemma subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool fl-eq_wf cubical-term-at_wf subset-cubical-term context-subset-is-subset lattice-1_wf face_lattice_wf btrue_wf iff_functionality_wrt_iff assert_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf true_wf iff_weakening_uiff assert-fl-eq iff_weakening_equal istype-true I_cube_wf fset_wf nat_wf cubical-app_wf_fun glue-type-constraint cubical-term-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut equalitySymmetry dependent_set_memberEquality_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis universeIsType instantiate equalityTransitivity independent_isectElimination applyEquality sqequalRule functionExtensionality dependent_functionElimination Error :memTop,  setElimination rename cumulativity lambdaEquality_alt inhabitedIsType productEquality isectEquality independent_functionElimination productElimination independent_pairFormation lambdaFormation_alt natural_numberEquality hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[b:\{Gamma  \mvdash{}  \_:Glue  [phi  \mvdash{}\mrightarrow{}  (T;w)]  A\}].
    (unglue(b)  \mmember{}  \{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  app(w;  b)]\})



Date html generated: 2020_05_20-PM-05_45_46
Last ObjectModification: 2020_04_21-PM-07_40_04

Theory : cubical!type!theory


Home Index