Nuprl Lemma : glue-type-constraint

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
  Gamma, phi ⊢ Glue [phi ⊢→ (T;w)] T


Proof




Definitions occuring in Statement :  glue-type: Glue [phi ⊢→ (T;w)] A same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-type: 𝔽 cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T same-cubical-type: Gamma ⊢ B subtype_rel: A ⊆B uimplies: supposing a cubical-type: {X ⊢ _} glue-type: Glue [phi ⊢→ (T;w)] A glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) glue-morph: glue-morph(Gamma;A;phi;T;w;I;rho;J;f;u) and: P ∧ Q all: x:A. B[x] context-subset: Gamma, phi bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q assert: b ifthenelse: if then else fi  btrue: tt guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True sq_type: SQType(T) cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y bfalse: ff respects-equality: respects-equality(S;T) squash: T
Lemmas referenced :  cubical-type-equal2 glue-type_wf subset-cubical-type context-subset-is-subset I_cube_wf context-subset_wf fset_wf nat_wf glue-cube_wf subset-I_cube names-hom_wf cube-set-restriction_wf istype-cubical-term cubical-fun_wf thin-context-subset cubical-type_wf face-type_wf cubical_set_wf I_cube_pair_redex_lemma subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool fl-eq_wf cubical-term-at_wf lattice-1_wf face_lattice_wf btrue_wf iff_functionality_wrt_iff assert_wf equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf true_wf iff_weakening_uiff assert-fl-eq iff_weakening_equal istype-true cubical_type_at_pair_lemma subtype_rel_self subset-cubical-term face-type-at respects-equality_weakening squash_wf istype-universe face-term-at-restriction-eq-1 cubical_type_ap_morph_pair_lemma cube_set_restriction_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis applyEquality independent_isectElimination sqequalRule setElimination rename productElimination dependent_pairEquality_alt functionExtensionality dependent_functionElimination functionIsType universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate Error :memTop,  cumulativity equalityTransitivity equalitySymmetry lambdaEquality_alt productEquality isectEquality independent_functionElimination independent_pairFormation lambdaFormation_alt natural_numberEquality dependent_set_memberEquality_alt equalityIstype imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].
    Gamma,  phi  \mvdash{}  Glue  [phi  \mvdash{}\mrightarrow{}  (T;w)]  A  =  T



Date html generated: 2020_05_20-PM-05_42_00
Last ObjectModification: 2020_04_21-PM-06_58_11

Theory : cubical!type!theory


Home Index