Nuprl Lemma : pres-invariant
∀[G,H:j⊢].
  ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀, (phi)p ⊢ _:T}].
  ∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)].
    (pres f [phi ⊢→ t] t0
    = pres f [phi ⊢→ t] t0
    ∈ {G ⊢ _:(Path_(A)[1(𝕀)] pres-c1(G;phi;f;t;t0;cA) pres-c2(G;phi;f;t;t0;cT))}) 
  supposing H = G ∈ CubicalSet{j}
Proof
Definitions occuring in Statement : 
pres: pres f [phi ⊢→ t] t0, 
pres-c2: pres-c2(G;phi;f;t;t0;cT), 
pres-c1: pres-c1(G;phi;f;t;t0;cA), 
composition-structure: Gamma ⊢ Compositon(A), 
path-type: (Path_A a b), 
partial-term-0: u[0], 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
all: ∀x:A. B[x], 
prop: ℙ, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
squash: ↓T, 
true: True, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
csm-ap: (s)x, 
csm-adjoin: (s;u), 
csm-id: 1(X), 
csm-ap-type: (AF)s, 
csm-id-adjoin: [u], 
interval-1: 1(𝕀), 
cubical-type: {X ⊢ _}
Lemmas referenced : 
context-subset-term-subtype, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-fun_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
cubical-app_wf_fun, 
thin-context-subset, 
cubical-fun-subset, 
pres_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
subtype_rel_self, 
composition-structure_wf, 
equal_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
partial-term-0_wf, 
constrained-cubical-term-eqcd, 
istype-cubical-term, 
context-subset_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-term-eqcd, 
path-type_wf, 
csm-id-adjoin_wf-interval-1, 
composition-function-cumulativity, 
pres-c1_wf, 
pres-c2_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
istype-universe, 
cube_set_map_wf, 
subtype_rel-equal, 
interval-1_wf, 
cubical-type-cumulativity, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term_wf, 
composition-function_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
instantiate, 
hypothesis, 
sqequalRule, 
Error :memTop, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
hyp_replacement, 
applyLambdaEquality, 
universeIsType, 
independent_isectElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
lambdaEquality_alt, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[G,H:j\mvdash{}].
    \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
    \mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
        (pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  =  pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0) 
    supposing  H  =  G
Date html generated:
2020_05_20-PM-05_32_52
Last ObjectModification:
2020_05_02-PM-03_55_40
Theory : cubical!type!theory
Home
Index