Nuprl Lemma : pres_wf

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)].
  (pres [phi ⊢→ t] t0 ∈ {G ⊢ _:(Path_(A)[1(𝕀)] pres-c1(G;phi;f;t;t0;cA) pres-c2(G;phi;f;t;t0;cT))})


Proof




Definitions occuring in Statement :  pres: pres [phi ⊢→ t] t0 pres-c2: pres-c2(G;phi;f;t;t0;cT) pres-c1: pres-c1(G;phi;f;t;t0;cA) composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) uimplies: supposing a composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) composition-function: composition-function{j:l,i:l}(Gamma;A) csm+: tau+ csm-comp: F csm-comp-structure: (cA)tau csm-adjoin: (s;u) compose: g csm-ap: (s)x constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cubical-type: {X ⊢ _} interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) pi1: fst(t) pres: pres [phi ⊢→ t] t0 implies:  Q same-cubical-term: X ⊢ u=v:A same-cubical-type: Gamma ⊢ B squash: T prop: true: True face-one: (i=1) face-or: (a ∨ b) cubical-term-at: u(a) csm-ap-term: (t)s face-1: 1(𝔽) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  csm+_wf interval-type_wf cc-fst_wf_interval csm-interval-type context-subset-term-subtype cube-context-adjoin_wf cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cubical-app_wf_fun thin-context-subset cubical-fun-subset subset-cubical-term context-subset_wf face-or_wf face-one_wf cc-snd_wf sub_cubical_set-cumulativity1 sub_cubical_set_functionality context-subset-is-subset csm-ap-type_wf cubical_set_cumulativity-i-j composition-structure_wf csm-id-adjoin_wf interval-0_wf partial-term-0_wf constrained-cubical-term-eqcd istype-cubical-term cubical-type_wf cubical_set_wf interval-1_wf presw_wf composition-function-cumulativity subtype_rel_self cubical-type-cumulativity2 pres-a0-constraint comp_term_wf csm-comp-structure-composition-function csm+_wf_interval composition-structure-cumulativity term-to-path-wf pres-c1_wf pres-c2_wf csm-ap-term-wf-subset face-term-implies-same csm-id-adjoin_wf-interval-1 csm-context-subset-subtype2 cubical-term_wf squash_wf true_wf cubical-term-equal face-1_wf I_cube_wf fset_wf nat_wf face-type-at lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf cubical-term-at_wf lattice-1-join bdd-distributive-lattice-subtype-bdd-lattice istype-universe dM-to-FL-dM1 iff_weakening_equal context-1-subset presw-pres-c2 presw-pres-c1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis sqequalRule Error :memTop,  applyEquality instantiate equalityTransitivity equalitySymmetry independent_isectElimination universeIsType setElimination rename dependent_functionElimination lambdaEquality_alt cumulativity universeEquality inhabitedIsType productElimination lambdaFormation_alt equalityIstype independent_functionElimination applyLambdaEquality hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed functionExtensionality productEquality isectEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
    (pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  \mmember{}  \{G  \mvdash{}  \_:(Path\_(A)[1(\mBbbI{})]  pres-c1(G;phi;f;t;t0;cA)
                                                                              pres-c2(G;phi;f;t;t0;cT))\})



Date html generated: 2020_05_20-PM-05_29_15
Last ObjectModification: 2020_05_02-PM-03_44_33

Theory : cubical!type!theory


Home Index