Nuprl Lemma : csm-fiber-comp
∀[G:j⊢]. ∀[A,T:{G ⊢ _}]. ∀[a:{G ⊢ _:A}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cT:G ⊢ Compositon(T)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
∀[f:{G ⊢ _:(T ⟶ A)}].
  ((fiber-comp(G;T;A;f;a;cT;cA))s = fiber-comp(H;(T)s;(A)s;(f)s;(a)s;(cT)s;(cA)s) ∈ H ⊢ Compositon(Fiber((f)s;(a)s)))
Proof
Definitions occuring in Statement : 
fiber-comp: fiber-comp(X;T;A;w;a;cT;cA)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-fiber: Fiber(w;a)
, 
cubical-fun: (A ⟶ B)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
csm-comp-structure: (cA)tau
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
compose: f o g
Lemmas referenced : 
csm-fiber-comp-sq, 
fiber-comp_wf, 
csm-ap-type_wf, 
csm-ap-term_wf, 
cubical-fun_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-cubical-fun, 
csm-comp-structure_wf, 
cube_set_map_cumulativity-i-j, 
istype-cubical-term, 
cubical-type-cumulativity2, 
cube_set_map_wf, 
composition-structure_wf, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[cT:G  \mvdash{}  Compositon(T)].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  G].  \mforall{}[f:\{G  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].
    ((fiber-comp(G;T;A;f;a;cT;cA))s  =  fiber-comp(H;(T)s;(A)s;(f)s;(a)s;(cT)s;(cA)s))
Date html generated:
2020_05_20-PM-05_13_35
Last ObjectModification:
2020_04_18-AM-10_02_55
Theory : cubical!type!theory
Home
Index