Nuprl Lemma : csm-fiber-comp-sq

[G,A,T,a,cA,cT,H,s,f:Top].  ((fiber-comp(G;T;A;f;a;cT;cA))s fiber-comp(H;(T)s;(A)s;(f)s;(a)s;(cT)s;(cA)s))


Proof




Definitions occuring in Statement :  fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) csm-comp-structure: (cA)tau csm-ap-term: (t)s csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) member: t ∈ T top: Top csm-ap-term: (t)s cc-fst: p csm+: tau+ csm-ap: (s)x cc-snd: q csm-ap-type: (AF)s csm-comp: F csm-adjoin: (s;u) pi1: fst(t) compose: g pi2: snd(t) csm-comp-structure: (cA)tau so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  top_wf csm-sigma_comp csm-path_comp csm-cubical-app lifting-strict-spread strict4-spread
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation because_Cache cut introduction extract_by_obid hypothesis hypothesisEquality isect_memberEquality voidElimination voidEquality sqequalRule sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination

Latex:
\mforall{}[G,A,T,a,cA,cT,H,s,f:Top].
    ((fiber-comp(G;T;A;f;a;cT;cA))s  \msim{}  fiber-comp(H;(T)s;(A)s;(f)s;(a)s;(cT)s;(cA)s))



Date html generated: 2017_01_10-AM-10_09_35
Last ObjectModification: 2016_12_24-PM-01_22_48

Theory : cubical!type!theory


Home Index