Nuprl Lemma : fiber-path_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[p:{X ⊢ _:Fiber(w;a)}].
  (fiber-path(p) ∈ {X ⊢ _:(Path_A app(w; fiber-member(p)))})


Proof




Definitions occuring in Statement :  fiber-path: fiber-path(p) fiber-member: fiber-member(p) cubical-fiber: Fiber(w;a) path-type: (Path_A b) cubical-app: app(w; u) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-fiber: Fiber(w;a) subtype_rel: A ⊆B fiber-path: fiber-path(p) fiber-member: fiber-member(p) all: x:A. B[x] and: P ∧ Q squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-term_wf cubical-fiber_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-fun_wf cubical-type_wf cubical_set_wf cubical-snd_wf path-type_wf cube-context-adjoin_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf csm-cubical-fun cubical-app_wf_fun squash_wf true_wf equal_wf istype-universe csm-path-type csm-id-adjoin_wf fiber-member_wf subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm_id_adjoin_fst_term_lemma csm-ap-id-type csm-ap-id-term csm-id_wf subset-cubical-term2 sub_cubical_set_self csm-cubical-app cc_snd_csm_id_adjoin_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis universeIsType thin instantiate introduction extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination lambdaEquality_alt hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:Fiber(w;a)\}].
    (fiber-path(p)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  a  app(w;  fiber-member(p)))\})



Date html generated: 2020_05_20-PM-03_24_42
Last ObjectModification: 2020_04_07-PM-04_05_51

Theory : cubical!type!theory


Home Index