Nuprl Lemma : face-or-eq-1

[Gamma:j⊢]
  ∀r,s:{Gamma ⊢ _:𝔽}. ∀I:fset(ℕ). ∀rho:Gamma(I).
    ((r ∨ s)(rho) 1 ∈ Point(face_lattice(I))
    ⇐⇒ (r(rho) 1 ∈ Point(face_lattice(I))) ∨ (s(rho) 1 ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  face-or: (a ∨ b) face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face_lattice: face_lattice(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt rev_implies:  Q
Lemmas referenced :  face-or-at lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf subtype_rel_self lattice-1_wf face_lattice-1-join-irreducible I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis independent_pairFormation unionIsType equalityIstype universeIsType hypothesisEquality applyEquality instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry productElimination independent_functionElimination dependent_functionElimination promote_hyp

Latex:
\mforall{}[Gamma:j\mvdash{}]
    \mforall{}r,s:\{Gamma  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).    ((r  \mvee{}  s)(rho)  =  1  \mLeftarrow{}{}\mRightarrow{}  (r(rho)  =  1)  \mvee{}  (s(rho)  =  1))



Date html generated: 2020_05_20-PM-02_42_08
Last ObjectModification: 2020_04_04-PM-04_50_41

Theory : cubical!type!theory


Home Index