Nuprl Lemma : csm-pres-c1
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀, (phi)p ⊢ _:T}].
∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cA:G.𝕀 ⊢ Compositon(A)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((pres-c1(G;phi;f;t;t0;cA))s
  = pres-c1(H;(phi)s;(f)s+;(t)s+;(t0)s;(cA)s+)
  ∈ {H ⊢ _:((A)s+)[1(𝕀)][(phi)s |⟶ app((f)s+; (t)s+)[1]]})
Proof
Definitions occuring in Statement : 
pres-c1: pres-c1(G;phi;f;t;t0;cA), 
csm-comp-structure: (cA)tau, 
composition-structure: Gamma ⊢ Compositon(A), 
partial-term-1: u[1], 
partial-term-0: u[0], 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-app: app(w; u), 
cubical-fun: (A ⟶ B), 
csm+: tau+, 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
composition-structure: Gamma ⊢ Compositon(A), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
uimplies: b supposing a, 
csm+: tau+, 
csm-comp: G o F, 
cubical-type: {X ⊢ _}, 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
csm-ap-type: (AF)s, 
interval-type: 𝕀, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
prop: ℙ, 
true: True, 
partial-term-1: u[1], 
csm-ap-term: (t)s, 
pres-c1: pres-c1(G;phi;f;t;t0;cA), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
partial-term-0: u[0], 
interval-0: 0(𝕀)
Lemmas referenced : 
pres-c1_wf, 
context-subset-term-subtype, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-fun_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
cubical-app_wf_fun, 
context-subset_wf, 
thin-context-subset, 
cubical-fun-subset, 
subset-cubical-term, 
context-subset-is-subset, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm+_wf_interval, 
cube_set_map_cumulativity-i-j, 
csm-id-adjoin_wf-interval-1, 
cube_set_map_wf, 
composition-structure_wf, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
partial-term-0_wf, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf, 
context-subset-map, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-context-subset-subtype2, 
cubical-term-eqcd, 
csm-cubical-app, 
csm-comp_term, 
context-adjoin-subset4, 
csm-cubical-fun, 
interval-0_wf, 
csm+_wf, 
subtype_rel-equal, 
cubical-term_wf, 
csm-interval-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
instantiate, 
Error :memTop, 
because_Cache, 
dependent_set_memberEquality_alt, 
equalityIstype, 
inhabitedIsType, 
independent_isectElimination, 
universeIsType, 
productElimination, 
hyp_replacement, 
lambdaEquality_alt, 
universeEquality, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
cumulativity, 
lambdaFormation_alt
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cA:G.\mBbbI{}  \mvdash{}  Compositon(A)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((pres-c1(G;phi;f;t;t0;cA))s  =  pres-c1(H;(phi)s;(f)s+;(t)s+;(t0)s;(cA)s+))
Date html generated:
2020_05_20-PM-05_25_55
Last ObjectModification:
2020_04_21-PM-02_58_28
Theory : cubical!type!theory
Home
Index