Nuprl Lemma : comp_term-subset
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma, phi.𝕀 ⊢ _:A}].
∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}]. ∀[psi:{Gamma ⊢ _:𝔽}].
  (comp cA [phi ⊢→ u] a0 = comp cA [phi ⊢→ u] a0 ∈ {Gamma, psi ⊢ _:(A)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
comp_term: comp cA [phi ⊢→ u] a0, 
composition-structure: Gamma ⊢ Compositon(A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
guard: {T}, 
interval-1: 1(𝕀), 
csm-ap-term: (t)s, 
interval-type: 𝕀, 
csm+: tau+, 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
cubical-type: {X ⊢ _}, 
uimplies: b supposing a, 
prop: ℙ, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
squash: ↓T, 
true: True, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
composition-structure: Gamma ⊢ Compositon(A), 
comp_trm: comp_trm, 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
csm-comp-structure: (cA)tau, 
cube-context-adjoin: X.A, 
cc-adjoin-cube: (v;u), 
cubical-term-at: u(a), 
and: P ∧ Q, 
interval-0: 0(𝕀)
Lemmas referenced : 
csm-comp_term, 
context-subset_wf, 
csm-id_wf, 
csm-context-subset-subtype2, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
thin-context-subset-adjoin, 
istype-cubical-term, 
composition-structure_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
thin-context-subset, 
csm-id-adjoin_wf-interval-1, 
cubical-term-eqcd, 
equal_wf, 
csm-face-type, 
context-subset-term-subtype, 
csm-id-adjoin_wf, 
interval-1_wf, 
cube_set_map_subtype3, 
sub_cubical_set_self, 
context-iterated-subset0, 
subset-cubical-term, 
csm-ap-id-term, 
context-iterated-subset1, 
sub_cubical_set_wf, 
context-subset-is-subset, 
squash_wf, 
true_wf, 
istype-universe, 
comp_term_wf, 
comp_trm_wf, 
composition-function_wf, 
csm-context-subset-subtype3, 
cube_set_map_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
csm-ap_wf, 
cc-adjoin-cube_wf, 
subset-I_cube, 
csm-equal, 
csm-context-subset-subtype, 
cubical-term-equal, 
sub_cubical_set_functionality, 
cubical-term-at_wf, 
subset-cubical-type, 
sub_cubical_set_transitivity, 
context-subset-swap, 
sub_cubical_set_functionality2, 
context-iterated-subset2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
inhabitedIsType, 
universeIsType, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
productElimination, 
cumulativity, 
setEquality, 
independent_isectElimination, 
Error :memTop, 
hyp_replacement, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality_alt, 
universeEquality, 
natural_numberEquality, 
lambdaFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
functionExtensionality, 
independent_pairFormation, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].  \mforall{}[psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  =  comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)
Date html generated:
2020_05_20-PM-04_40_06
Last ObjectModification:
2020_04_18-PM-01_33_22
Theory : cubical!type!theory
Home
Index