Nuprl Lemma : comp-fun-to-comp-op_wf
∀Gamma:j⊢. ∀A:{Gamma ⊢ _}.  ∀[comp:Gamma ⊢ Compositon(A)]. (cfun-to-cop(Gamma;A;comp) ∈ Gamma ⊢ CompOp(A))
Proof
Definitions occuring in Statement : 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp), 
composition-structure: Gamma ⊢ Compositon(A), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-op: Gamma ⊢ CompOp(A), 
composition-uniformity: composition-uniformity(Gamma;A;comp), 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp), 
comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
subtype_rel: A ⊆r B, 
names-hom: I ⟶ J, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
formal-cube: formal-cube(I), 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
unit: Unit, 
trivial-cube-set: (), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term-at: u(a), 
ext-eq: A ≡ B, 
lattice-hom: Hom(l1;l2), 
bounded-lattice-hom: Hom(l1;l2), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
compose: f o g, 
csm-ap: (s)x, 
csm-comp: G o F, 
subset-iota: iota, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
functor-arrow: arrow(F), 
subset-trans: subset-trans(I;J;f;x), 
context-map: <rho>, 
interval-presheaf: 𝕀, 
cube-context-adjoin: X.A, 
cube+: cube+(I;i), 
cc-fst: p, 
pi2: snd(t), 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
it: ⋅, 
bool: 𝔹, 
names: names(I), 
DeMorgan-algebra: DeMorganAlgebra, 
nc-s: s, 
cat-comp: cat-comp(C), 
type-cat: TypeCat, 
cat-arrow: cat-arrow(C), 
quotient: x,y:A//B[x; y], 
fset: fset(T), 
cube-cat: CubeCat, 
spreadn: spread4, 
op-cat: op-cat(C), 
cat-ob: cat-ob(C), 
nat-trans: nat-trans(C;D;F;G), 
psc_map: A ⟶ B, 
cube_set_map: A ⟶ B, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap-term: (t)s, 
cc-snd: q, 
csm-adjoin: (s;u), 
cubical-term: {X ⊢ _:A}, 
cubical-type-ap-morph: (u a f), 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
context-subset: Gamma, phi, 
nc-e': g,i=j, 
nequal: a ≠ b ∈ T , 
name-morph-satisfies: (psi f) = 1, 
top: Top, 
dM-lift: dM-lift(I;J;f), 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f), 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
interval-1: 1(𝕀), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
interval-0: 0(𝕀), 
dM0: 0, 
free-dist-lattice: free-dist-lattice(T; eq), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dM: dM(I), 
lattice-0: 0, 
nil: [], 
empty-fset: {}, 
nc-0: (i0), 
partial-term-0: u[0]
Lemmas referenced : 
comp-fun-to-comp-op_wf1, 
formal-cube_wf1, 
context-map_wf, 
subtype_rel_self, 
I_cube_wf, 
csm-comp_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cube+_wf, 
canonical-section_wf, 
trivial-cube-set_wf, 
face-type_wf, 
it_wf, 
cubical-type-at_wf_face-type, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
csm-face-type, 
cubical-path-0_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
istype-cubical-term, 
cubical-subset_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
subset-iota_wf, 
names-hom_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
composition-uniformity_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
context-subset-is-cubical-subset, 
iff_weakening_equal, 
csm-ap-term-cube+, 
canonical-section-cubical-path-0, 
fl-morph-id, 
face-type-ap-morph, 
csm-comp-term, 
csm-ap-term_wf, 
cc-fst_wf_interval, 
thin-context-subset, 
context-adjoin-subset3, 
nc-e'_wf, 
thin-context-subset-adjoin, 
context-adjoin-subset0, 
context-subset_wf, 
subset-cubical-term, 
cubical-term-equal2, 
subset-trans_wf, 
fl-morph_wf, 
nh-comp_wf, 
nc-e'-lemma3, 
lattice-join_wf, 
lattice-meet_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face_lattice_wf, 
lattice-point_wf, 
cube_set_restriction_pair_lemma, 
fl-morph-comp2, 
cubical-term_wf, 
cube_set_map_wf, 
csm-comp-type, 
context-map_wf_cubical-subset, 
csm-equal, 
cubical-subset-I_cube, 
cube-set-restriction-comp, 
context-subset-map, 
cubical-subset-is-context-subset-canonical, 
csm-subset-domain, 
csm-canonical-section-face-type, 
cubical-term-equal, 
csm-ap_wf, 
csm-canonical-section-face, 
interval-type-at, 
I_cube_pair_redex_lemma, 
face-type-at, 
names_wf, 
not-added-name, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
eq_int_wf, 
int_subtype_base, 
assert_of_eq_int, 
eqtt_to_assert, 
names-subtype, 
dM-lift-inc, 
DeMorgan-algebra-axioms_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
DeMorgan-algebra-structure_wf, 
dM_wf, 
nh-comp-sq, 
sub_cubical_set_wf, 
csm-context-subset-subtype3, 
csm+_wf_interval, 
csm-subset-codomain, 
csm-interval-type, 
csm+_wf, 
cubical-term-eqcd, 
csm-context-subset-subtype2, 
subtype_rel_wf, 
subset-cubical-type, 
context-map-cube+-csm+, 
context-subset-is-subset, 
arrow_pair_lemma, 
trivial-member-add-name1, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
dM-lift-sq, 
dM-lift_wf2, 
cubical-type-cumulativity, 
cubical-type-at_wf, 
csm-ap-type-at, 
cubical-term-at_wf, 
uall_wf, 
set_subtype_base, 
not_wf, 
name-morph-satisfies_wf, 
constrained-cubical-term-eqcd, 
csm-id-adjoin_wf-interval-1, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-ap-comp-term, 
nc-e'-lemma2, 
cubical-type-ap-morph-comp-eq-general, 
cubical-type-ap-morph_wf, 
nc-0_wf, 
csm-id-adjoin_wf-interval-0, 
dM0_wf, 
formal-cube-restriction, 
cube-set-map-subtype, 
subtype_rel-equal, 
partial-term-0_wf, 
member_wf, 
interval-0_wf, 
csm-comp-assoc, 
context-subset-term-subtype, 
csm-ap-comp-type, 
nc-1_wf, 
context-map-comp2, 
cube+_interval-1, 
cube-set-restriction-id, 
subtype_rel_universe1, 
nh-id_wf, 
comp-fun-to-comp-op1_wf, 
csm-ap-term-at, 
nh-id-right, 
csm-cubical-type-ap-morph, 
istype-cubical-type-at, 
nh-id-left, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
sqequalRule, 
applyEquality, 
instantiate, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
setIsType, 
functionIsType, 
intEquality, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
equalityIstype, 
isectEquality, 
cumulativity, 
productEquality, 
hyp_replacement, 
functionExtensionality, 
promote_hyp, 
equalityElimination, 
applyLambdaEquality, 
isect_memberEquality_alt, 
equalityIsType4, 
baseApply, 
closedConclusion, 
equalityIsType1, 
functionEquality
Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.
    \mforall{}[comp:Gamma  \mvdash{}  Compositon(A)].  (cfun-to-cop(Gamma;A;comp)  \mmember{}  Gamma  \mvdash{}  CompOp(A))
Date html generated:
2020_05_20-PM-04_32_16
Last ObjectModification:
2020_05_02-PM-07_25_25
Theory : cubical!type!theory
Home
Index