Nuprl Lemma : cube+_interval-1
∀[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) o [1(𝕀)] = <(i1)> ∈ formal-cube(I) j⟶ formal-cube(I+i))
Proof
Definitions occuring in Statement : 
cube+: cube+(I;i), 
interval-1: 1(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-comp: G o F, 
context-map: <rho>, 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
nc-1: (i1), 
add-name: I+i, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
formal-cube: formal-cube(I), 
names-hom: I ⟶ J, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
context-map: <rho>, 
cube+: cube+(I;i), 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
csm-comp: G o F, 
compose: f o g, 
csm-adjoin: (s;u), 
csm-id: 1(X), 
csm-ap: (s)x, 
nc-1: (i1), 
names: names(I), 
nat: ℕ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
istype-nat, 
fset_wf, 
nat_wf, 
csm-equal, 
formal-cube_wf1, 
add-name_wf, 
csm-comp_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
cube+_wf, 
context-map_wf, 
nc-1_wf, 
I_cube_wf, 
I_cube_pair_redex_lemma, 
arrow_pair_lemma, 
names_wf, 
nh-comp-sq, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
dM1-sq-singleton-empty, 
dM-lift-1, 
subtype_rel_self, 
names-hom_wf, 
not-added-name, 
dM-lift-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
functionExtensionality, 
Error :memTop, 
setElimination, 
rename, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
cumulativity, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  o  [1(\mBbbI{})]  =  <(i1)>)
Date html generated:
2020_05_20-PM-02_39_23
Last ObjectModification:
2020_04_04-PM-02_52_43
Theory : cubical!type!theory
Home
Index