Nuprl Lemma : cube+_wf
∀[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) ∈ formal-cube(I).𝕀 j⟶ formal-cube(I+i))
Proof
Definitions occuring in Statement : 
cube+: cube+(I;i)
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
add-name: I+i
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat-trans: nat-trans(C;D;F;G)
, 
psc_map: A ⟶ B
, 
cube_set_map: A ⟶ B
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
subtype_rel: A ⊆r B
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
names: names(I)
, 
names-hom: I ⟶ J
, 
interval-presheaf: 𝕀
, 
cube+: cube+(I;i)
, 
all: ∀x:A. B[x]
, 
cube-context-adjoin: X.A
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
cat-ob: cat-ob(C)
, 
op-cat: op-cat(C)
, 
cat-arrow: cat-arrow(C)
, 
type-cat: TypeCat
, 
functor-ob: ob(F)
, 
formal-cube: formal-cube(I)
, 
compose: f o g
, 
functor-arrow: arrow(F)
, 
fset: fset(T)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
Lemmas referenced : 
nat_wf, 
fset_wf, 
istype-nat, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
dM_wf, 
lattice-point_wf, 
names-hom_wf, 
add-name_wf, 
names_wf, 
not-added-name, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
eq_int_wf, 
interval-type-at, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
arrow_pair_lemma, 
cat_comp_tuple_lemma, 
nh-comp-sq, 
assert_of_eq_int, 
eqtt_to_assert, 
dM-lift_wf2, 
interval-type-ap-morph, 
subtype_rel_self, 
cube-set-restriction_wf, 
interval-type_wf, 
formal-cube_wf1, 
cube-context-adjoin_wf, 
I_cube_wf, 
cat-arrow_wf, 
cube-cat_wf, 
op-cat_wf, 
cat-ob_wf, 
cat_arrow_triple_lemma
Rules used in proof : 
thin, 
isectElimination, 
sqequalHypSubstitution, 
universeIsType, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality_alt, 
isectEquality, 
productEquality, 
applyEquality, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityIstype, 
dependent_pairFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
hypothesisEquality, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
because_Cache, 
rename, 
setElimination, 
lambdaEquality_alt, 
productElimination, 
functionExtensionality, 
Error :memTop, 
dependent_functionElimination, 
sqequalRule, 
functionIsType
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  \mmember{}  formal-cube(I).\mBbbI{}  j{}\mrightarrow{}  formal-cube(I+i))
Date html generated:
2020_05_20-PM-02_38_31
Last ObjectModification:
2020_04_04-PM-01_34_45
Theory : cubical!type!theory
Home
Index