Nuprl Lemma : cube+_wf

[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) ∈ formal-cube(I).𝕀 j⟶ formal-cube(I+i))


Proof




Definitions occuring in Statement :  cube+: cube+(I;i) interval-type: 𝕀 cube-context-adjoin: X.A cube_set_map: A ⟶ B formal-cube: formal-cube(I) add-name: I+i fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat-trans: nat-trans(C;D;F;G) psc_map: A ⟶ B cube_set_map: A ⟶ B so_apply: x[s] prop: so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra subtype_rel: A ⊆B false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q nat: names: names(I) names-hom: I ⟶ J interval-presheaf: 𝕀 cube+: cube+(I;i) all: x:A. B[x] cube-context-adjoin: X.A pi1: fst(t) pi2: snd(t) spreadn: spread4 cube-cat: CubeCat cat-ob: cat-ob(C) op-cat: op-cat(C) cat-arrow: cat-arrow(C) type-cat: TypeCat functor-ob: ob(F) formal-cube: formal-cube(I) compose: g functor-arrow: arrow(F) fset: fset(T) cube-set-restriction: f(s) I_cube: A(I)
Lemmas referenced :  nat_wf fset_wf istype-nat DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf names-hom_wf add-name_wf names_wf not-added-name neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert eq_int_wf interval-type-at I_cube_pair_redex_lemma cube_set_restriction_pair_lemma arrow_pair_lemma cat_comp_tuple_lemma nh-comp-sq assert_of_eq_int eqtt_to_assert dM-lift_wf2 interval-type-ap-morph subtype_rel_self cube-set-restriction_wf interval-type_wf formal-cube_wf1 cube-context-adjoin_wf I_cube_wf cat-arrow_wf cube-cat_wf op-cat_wf cat-ob_wf cat_arrow_triple_lemma
Rules used in proof :  thin isectElimination sqequalHypSubstitution universeIsType hypothesis extract_by_obid introduction cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality_alt isectEquality productEquality applyEquality voidElimination independent_functionElimination cumulativity instantiate promote_hyp equalityIstype dependent_pairFormation_alt equalitySymmetry equalityTransitivity independent_isectElimination hypothesisEquality equalityElimination unionElimination lambdaFormation_alt inhabitedIsType because_Cache rename setElimination lambdaEquality_alt productElimination functionExtensionality Error :memTop,  dependent_functionElimination sqequalRule functionIsType

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  \mmember{}  formal-cube(I).\mBbbI{}  j{}\mrightarrow{}  formal-cube(I+i))



Date html generated: 2020_05_20-PM-02_38_31
Last ObjectModification: 2020_04_04-PM-01_34_45

Theory : cubical!type!theory


Home Index