Nuprl Lemma : context-subset-is-cubical-subset
∀[I:fset(ℕ)]. ∀[phi:{formal-cube(I) ⊢ _:𝔽}].  (formal-cube(I), phi = I,phi(1) ∈ CubicalSet{j})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi, 
face-type: 𝔽, 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
cubical-subset: I,psi, 
formal-cube: formal-cube(I), 
cubical_set: CubicalSet, 
nh-id: 1, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
formal-cube: formal-cube(I), 
names-hom: I ⟶ J, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
cubical-subset: I,psi, 
context-subset: Gamma, phi, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
cubical-term-at: u(a), 
name-morph-satisfies: (psi f) = 1, 
cat-arrow: cat-arrow(C), 
all: ∀x:A. B[x], 
pi2: snd(t), 
cube-cat: CubeCat, 
squash: ↓T, 
true: True, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
prop: ℙ, 
lattice: Lattice, 
rev_uimplies: rev_uimplies(P;Q), 
rev_subtype_rel: A ⊇r B, 
guard: {T}, 
cat-comp: cat-comp(C), 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
so_apply: x[s], 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
cubical-term: {X ⊢ _:A}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
cubical_sets_equal, 
context-subset_wf, 
formal-cube_wf1, 
cubical-subset_wf, 
cubical-term-at_wf, 
face-type_wf, 
nh-id_wf, 
names-hom_wf, 
istype-cubical-term, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
cubical-term-at-morph, 
face-type-ap-morph, 
face-type-at, 
cube_set_restriction_pair_lemma, 
nh-id-right, 
equal_wf, 
lattice-point_wf, 
lattice-1_wf, 
face_lattice_wf, 
bdd-distributive-lattice-subtype-lattice, 
lattice_wf, 
lattice-structure_wf, 
bdd-distributive-lattice_wf, 
subtype_rel_functionality_wrt_implies, 
subtype_rel_weakening, 
ext-eq_inversion, 
ext-eq_weakening, 
I_cube_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
subtype_rel_self, 
nh-comp_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
fl-morph_wf, 
fl-morph-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
applyEquality, 
independent_isectElimination, 
dependent_pairEquality_alt, 
functionIsType, 
inhabitedIsType, 
universeIsType, 
functionExtensionality, 
dependent_functionElimination, 
Error :memTop, 
setEquality, 
instantiate, 
applyLambdaEquality, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
cumulativity, 
productEquality, 
isectEquality, 
dependent_set_memberEquality_alt, 
universeEquality, 
productElimination, 
independent_functionElimination, 
equalityIstype
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:\{formal-cube(I)  \mvdash{}  \_:\mBbbF{}\}].    (formal-cube(I),  phi  =  I,phi(1))
Date html generated:
2020_05_20-PM-02_46_13
Last ObjectModification:
2020_04_20-PM-00_05_02
Theory : cubical!type!theory
Home
Index