Nuprl Lemma : subset-trans_wf
∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[psi:𝔽(I)].  (subset-trans(I;J;f;psi) ∈ J,(psi)<f> j⟶ I,psi)
Proof
Definitions occuring in Statement : 
subset-trans: subset-trans(I;J;f;x), 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
fl-morph: <f>, 
cube_set_map: A ⟶ B, 
I_cube: A(I), 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subset-trans: subset-trans(I;J;f;x), 
cube_set_map: A ⟶ B, 
cube-cat: CubeCat, 
psc_map: A ⟶ B, 
type-cat: TypeCat, 
op-cat: op-cat(C), 
nat-trans: nat-trans(C;D;F;G), 
spreadn: spread4, 
all: ∀x:A. B[x], 
functor-arrow: arrow(F), 
functor-ob: ob(F), 
cubical-subset: I,psi, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
pi1: fst(t), 
pi2: snd(t), 
cat-comp: cat-comp(C), 
compose: f o g, 
cat-arrow: cat-arrow(C), 
subtype_rel: A ⊆r B, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
I_cube: A(I), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
name-morph-satisfies: (psi f) = 1, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
face-presheaf_wf, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_ob_pair_lemma, 
I_cube_wf, 
small_cubical_set_subtype, 
names-hom_wf, 
fset_wf, 
nat_wf, 
name-morph-satisfies_wf, 
fl-morph_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nh-comp_wf, 
lattice-1_wf, 
squash_wf, 
true_wf, 
istype-universe, 
fl-morph-comp, 
iff_weakening_equal, 
nh-comp-assoc, 
fl-morph-1
Rules used in proof : 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
dependent_set_memberEquality_alt, 
universeIsType, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
lambdaEquality_alt, 
lambdaFormation_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
cumulativity, 
isectEquality, 
independent_isectElimination, 
setIsType, 
equalityIstype, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
functionExtensionality, 
setEquality, 
functionIsType
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[psi:\mBbbF{}(I)].    (subset-trans(I;J;f;psi)  \mmember{}  J,(psi)<f>  j{}\mrightarrow{}  I,psi)
Date html generated:
2020_05_20-PM-01_45_46
Last ObjectModification:
2020_04_03-PM-07_16_14
Theory : cubical!type!theory
Home
Index