Nuprl Lemma : context-map-cube+-csm+

[Gamma:j⊢]. ∀[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[rho:Gamma(I+i)].
  (<g,i=j(rho)> cube+(J;j) = <rho> cube+(I;i) o <g>+ ∈ formal-cube(J).𝕀 j⟶ Gamma)


Proof




Definitions occuring in Statement :  cube+: cube+(I;i) interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-comp: F context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-e': g,i=j add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) so_lambda: λ2x.t[x] so_apply: x[s] cube-context-adjoin: X.A context-map: <rho> cube+: cube+(I;i) csm-comp: F csm+: tau+ compose: g csm-adjoin: (s;u) cc-fst: p csm-ap: (s)x cc-snd: q functor-arrow: arrow(F) pi2: snd(t) cube-set-restriction: f(s) squash: T names: names(I) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  cubical-type-at: A(a) interval-type: 𝕀 constant-cubical-type: (X) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) DeMorgan-algebra: DeMorganAlgebra guard: {T} uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b true: True iff: ⇐⇒ Q rev_implies:  Q nc-e': g,i=j nequal: a ≠ b ∈  dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property union-deq: union-deq(A;B;a;b)
Lemmas referenced :  csm-equal cube-context-adjoin_wf formal-cube_wf1 interval-type_wf csm-comp_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube+_wf context-map_wf cube-set-restriction_wf nc-e'_wf cubical_set_cumulativity-i-j csm+_wf_interval subtype_rel_self I_cube_wf cube-set-map-subtype names-hom_wf fset-member_wf nat_wf int-deq_wf istype-void istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf cubical_set_wf I_cube_pair_redex_lemma arrow_pair_lemma equal_wf squash_wf true_wf istype-universe cube-set-restriction-comp eq_int_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name names_wf nh-comp_wf iff_weakening_equal interval-type-at eqtt_to_assert assert_of_eq_int nh-comp-sq dM-lift-inc trivial-member-add-name1 intformeq_wf int_formula_prop_eq_lemma dM-lift_wf2 int_subtype_base free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin instantiate hypothesisEquality dependent_set_memberEquality_alt setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination because_Cache applyEquality setIsType functionIsType intEquality functionExtensionality productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality inhabitedIsType lambdaFormation_alt equalityElimination productEquality cumulativity isectEquality equalityIstype promote_hyp imageMemberEquality baseClosed

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[rho:Gamma(I+i)\000C].
    (<g,i=j(rho)>  o  cube+(J;j)  =  <rho>  o  cube+(I;i)  o  <g>+)



Date html generated: 2020_05_20-PM-02_39_39
Last ObjectModification: 2020_04_04-PM-06_58_53

Theory : cubical!type!theory


Home Index