Nuprl Lemma : context-map-cube+-csm+
∀[Gamma:j⊢]. ∀[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[rho:Gamma(I+i)].
  (<g,i=j(rho)> o cube+(J;j) = <rho> o cube+(I;i) o <g>+ ∈ formal-cube(J).𝕀 j⟶ Gamma)
Proof
Definitions occuring in Statement : 
cube+: cube+(I;i)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-comp: G o F
, 
context-map: <rho>
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-e': g,i=j
, 
add-name: I+i
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
names-hom: I ⟶ J
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
formal-cube: formal-cube(I)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cube-context-adjoin: X.A
, 
context-map: <rho>
, 
cube+: cube+(I;i)
, 
csm-comp: G o F
, 
csm+: tau+
, 
compose: f o g
, 
csm-adjoin: (s;u)
, 
cc-fst: p
, 
csm-ap: (s)x
, 
cc-snd: q
, 
functor-arrow: arrow(F)
, 
pi2: snd(t)
, 
cube-set-restriction: f(s)
, 
squash: ↓T
, 
names: names(I)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
cubical-type-at: A(a)
, 
interval-type: 𝕀
, 
constant-cubical-type: (X)
, 
interval-presheaf: 𝕀
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nc-e': g,i=j
, 
nequal: a ≠ b ∈ T 
, 
dM-lift: dM-lift(I;J;f)
, 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f)
, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
union-deq: union-deq(A;B;a;b)
Lemmas referenced : 
csm-equal, 
cube-context-adjoin_wf, 
formal-cube_wf1, 
interval-type_wf, 
csm-comp_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cube+_wf, 
context-map_wf, 
cube-set-restriction_wf, 
nc-e'_wf, 
cubical_set_cumulativity-i-j, 
csm+_wf_interval, 
subtype_rel_self, 
I_cube_wf, 
cube-set-map-subtype, 
names-hom_wf, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
istype-void, 
istype-nat, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
cubical_set_wf, 
I_cube_pair_redex_lemma, 
arrow_pair_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube-set-restriction-comp, 
eq_int_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-added-name, 
names_wf, 
nh-comp_wf, 
iff_weakening_equal, 
interval-type-at, 
eqtt_to_assert, 
assert_of_eq_int, 
nh-comp-sq, 
dM-lift-inc, 
trivial-member-add-name1, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
dM-lift_wf2, 
int_subtype_base, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
applyEquality, 
setIsType, 
functionIsType, 
intEquality, 
functionExtensionality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
productEquality, 
cumulativity, 
isectEquality, 
equalityIstype, 
promote_hyp, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[rho:Gamma(I+i)\000C].
    (<g,i=j(rho)>  o  cube+(J;j)  =  <rho>  o  cube+(I;i)  o  <g>+)
Date html generated:
2020_05_20-PM-02_39_39
Last ObjectModification:
2020_04_04-PM-06_58_53
Theory : cubical!type!theory
Home
Index