Nuprl Lemma : csm-ap-term-cube+

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
[u:{I+i,s(phi) ⊢ _:(A)<rho> iota}].
  ((u)cube+(I;i) ∈ {formal-cube(I), canonical-section(();𝔽;I;⋅;phi).𝕀 ⊢ _:(A)<rho> cube+(I;i)})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cube+: cube+(I;i) interval-type: 𝕀 cube-context-adjoin: X.A csm-ap-term: (t)s canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> trivial-cube-set: () formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: it: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B unit: Unit I_cube: A(I) functor-ob: ob(F) pi1: fst(t) trivial-cube-set: () face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term-at: u(a) so_lambda: λ2x.t[x] so_apply: x[s] cubical-type: {X ⊢ _} interval-type: 𝕀 csm-comp: F csm-ap-type: (AF)s subset-iota: iota compose: g csm-ap: (s)x csm-ap-term: (t)s formal-cube: formal-cube(I) names-hom: I ⟶ J bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) cube-context-adjoin: X.A interval-presheaf: 𝕀 cc-fst: p cube+: cube+(I;i) nc-s: s DeMorgan-algebra: DeMorganAlgebra names: names(I) bool: 𝔹 it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  csm-face-type face-type_wf formal-cube_wf1 add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cubical-term-eqcd canonical-section_wf cube-set-restriction_wf nc-s_wf f-subset-add-name trivial-cube-set_wf it_wf subtype_rel_self I_cube_wf cubical-type-at_wf_face-type equal_wf squash_wf true_wf istype-universe cubical_set_wf context-subset-is-cubical-subset iff_weakening_equal cubical-subset_wf face-presheaf_wf2 istype-cubical-term csm-ap-type_wf csm-comp_wf subset-iota_wf context-map_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf fl-morph-id face-type-ap-morph context-subset-map cube-context-adjoin_wf interval-type_wf cube+_wf csm-ap-term_wf context-subset_wf cubical_set_cumulativity-i-j subtype_rel-equal cube_set_map_wf subset-cubical-term context-adjoin-subset2 sub_cubical_set_wf cubical-term-equal2 cc-fst_wf_interval cube_set_restriction_pair_lemma fl-morph-comp2 csm-ap_wf names-hom_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph_wf I_cube_pair_redex_lemma interval-type-at nh-comp-sq dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dM-lift-inc eq_int_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name names_wf names-subtype eqtt_to_assert assert_of_eq_int int_subtype_base subset-cubical-type context-subset-is-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality dependent_set_memberEquality_alt setElimination rename because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation universeIsType voidElimination equalityTransitivity equalitySymmetry applyEquality hyp_replacement instantiate imageElimination universeEquality imageMemberEquality baseClosed productElimination setIsType functionIsType intEquality inhabitedIsType cumulativity lambdaFormation_alt equalityIstype productEquality isectEquality functionExtensionality equalityElimination promote_hyp

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
    ((u)cube+(I;i)  \mmember{}  \{formal-cube(I),  canonical-section(();\mBbbF{};I;\mcdot{};phi).\mBbbI{}  \mvdash{}  \_:(A)<rho>  o  cube+(I;i)\})



Date html generated: 2020_05_20-PM-04_27_35
Last ObjectModification: 2020_04_21-AM-00_49_57

Theory : cubical!type!theory


Home Index