Nuprl Lemma : csm-ap-term-cube+
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
∀[u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}].
  ((u)cube+(I;i) ∈ {formal-cube(I), canonical-section(();𝔽;I;⋅;phi).𝕀 ⊢ _:(A)<rho> o cube+(I;i)})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi, 
face-type: 𝔽, 
cube+: cube+(I;i), 
interval-type: 𝕀, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
trivial-cube-set: (), 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-s: s, 
add-name: I+i, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
it: ⋅, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
unit: Unit, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
trivial-cube-set: (), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term-at: u(a), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cubical-type: {X ⊢ _}, 
interval-type: 𝕀, 
csm-comp: G o F, 
csm-ap-type: (AF)s, 
subset-iota: iota, 
compose: f o g, 
csm-ap: (s)x, 
csm-ap-term: (t)s, 
formal-cube: formal-cube(I), 
names-hom: I ⟶ J, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
cube-context-adjoin: X.A, 
interval-presheaf: 𝕀, 
cc-fst: p, 
cube+: cube+(I;i), 
nc-s: s, 
DeMorgan-algebra: DeMorganAlgebra, 
names: names(I), 
bool: 𝔹, 
it: ⋅, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
csm-face-type, 
face-type_wf, 
formal-cube_wf1, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cubical-term-eqcd, 
canonical-section_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
trivial-cube-set_wf, 
it_wf, 
subtype_rel_self, 
I_cube_wf, 
cubical-type-at_wf_face-type, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical_set_wf, 
context-subset-is-cubical-subset, 
iff_weakening_equal, 
cubical-subset_wf, 
face-presheaf_wf2, 
istype-cubical-term, 
csm-ap-type_wf, 
csm-comp_wf, 
subset-iota_wf, 
context-map_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
cubical-type_wf, 
fl-morph-id, 
face-type-ap-morph, 
context-subset-map, 
cube-context-adjoin_wf, 
interval-type_wf, 
cube+_wf, 
csm-ap-term_wf, 
context-subset_wf, 
cubical_set_cumulativity-i-j, 
subtype_rel-equal, 
cube_set_map_wf, 
subset-cubical-term, 
context-adjoin-subset2, 
sub_cubical_set_wf, 
cubical-term-equal2, 
cc-fst_wf_interval, 
cube_set_restriction_pair_lemma, 
fl-morph-comp2, 
csm-ap_wf, 
names-hom_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-morph_wf, 
I_cube_pair_redex_lemma, 
interval-type-at, 
nh-comp-sq, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
dM-lift-inc, 
eq_int_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-added-name, 
names_wf, 
names-subtype, 
eqtt_to_assert, 
assert_of_eq_int, 
int_subtype_base, 
subset-cubical-type, 
context-subset-is-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
hyp_replacement, 
instantiate, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
setIsType, 
functionIsType, 
intEquality, 
inhabitedIsType, 
cumulativity, 
lambdaFormation_alt, 
equalityIstype, 
productEquality, 
isectEquality, 
functionExtensionality, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
    ((u)cube+(I;i)  \mmember{}  \{formal-cube(I),  canonical-section(();\mBbbF{};I;\mcdot{};phi).\mBbbI{}  \mvdash{}  \_:(A)<rho>  o  cube+(I;i)\})
Date html generated:
2020_05_20-PM-04_27_35
Last ObjectModification:
2020_04_21-AM-00_49_57
Theory : cubical!type!theory
Home
Index