Nuprl Lemma : comp-op-to-comp-fun-inverse

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)].  (cfun-to-cop(Gamma;A;cop-to-cfun(cA)) cA ∈ Gamma ⊢ CompOp(A))


Proof




Definitions occuring in Statement :  comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-op-to-comp-fun: cop-to-cfun(cA) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-op: Gamma ⊢ CompOp(A) member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T interval-presheaf: 𝕀 names: names(I) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) comp-op-to-comp-fun: cop-to-cfun(cA) comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) csm-composition: (comp)sigma composition-term: comp cA [phi ⊢→ u] a0 cubical-term-at: u(a) canonical-section: canonical-section(Gamma;A;I;rho;a) composition-uniformity: composition-uniformity(Gamma;A;comp) names-hom: I ⟶ J nc-e': g,i=j cube+: cube+(I;i) cc-adjoin-cube: (v;u) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) DeMorgan-algebra: DeMorganAlgebra sq_type: SQType(T) bnot: ¬bb assert: b formal-cube: formal-cube(I) cube-set-restriction: f(s) pi2: snd(t) nh-id: 1 true: True iff: ⇐⇒ Q rev_implies:  Q nc-s: s dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] context-map: <rho> csm-comp: F csm-ap: (s)x compose: g functor-arrow: arrow(F) cubical-type: {X ⊢ _} csm-ap-type: (AF)s subset-iota: iota csm-ap-term: (t)s subset-trans: subset-trans(I;J;f;x) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) dM-lift: dM-lift(I;J;f) cube-context-adjoin: X.A face-presheaf: 𝔽 bdd-distributive-lattice: BoundedDistributiveLattice face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) cubical-type-ap-morph: (u f) face-type: 𝔽 fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cat-arrow: cat-arrow(C) type-cat: TypeCat cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) fset: fset(T) quotient: x,y:A//B[x; y] cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat nc-0: (i0) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property empty-fset: {} nil: [] lattice-0: 0 dM0: 0 nequal: a ≠ b ∈  dma-hom: dma-hom(dma1;dma2) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) rev_uimplies: rev_uimplies(P;Q) nc-1: (i1)
Lemmas referenced :  cubical-path-0_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf sq_stable__composition-uniformity composition-uniformity_wf composition-op_wf cubical-type_wf cubical_set_wf interval-type-at I_cube_pair_redex_lemma dM_inc_wf new-name_wf trivial-member-add-name1 nh-id_wf eq_int_wf eqtt_to_assert assert_of_eq_int subtype_rel_self lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name names_wf istype-top squash_wf true_wf istype-universe nh-id-right names-subtype iff_weakening_equal names-hom_wf nc-e'_wf cubical-type-at_wf cube-set-restriction-id nc-1_wf cubical-type-ap-morph-id cubical-term-equal csm-ap-type-at cubical-subset-I_cube cube-set-restriction-comp csm-ap-context-map cubical-term-at_wf context-map_wf_cubical-subset interval-type-ap-morph cube_set_restriction_pair_lemma dM-lift_wf2 dM-lift-inc nh-comp_wf name-morph-satisfies_wf face_lattice_wf fl-morph-comp2 fl-morph_wf int_subtype_base name-morph-satisfies-comp nc-e'-lemma3 csm-ap-restriction csm-ap_wf cubical-type-equal subtype_rel_product subtype_rel_universe1 subtype_rel_dep_function equal_functionality_wrt_subtype_rel2 csm-ap-term_wf subset-trans_wf cube_set_map_wf face-type-ap-morph nc-0_wf cube-context-adjoin_wf interval-type_wf cube+_wf cc-adjoin-cube_wf cat-ob_wf op-cat_wf cube-cat_wf cubical-type-ap-morph_wf cc-adjoin-cube-restriction formal-cube-restriction dM0_wf intformeq_wf int_formula_prop_eq_lemma interval-type-ap-inc eq_int_eq_true btrue_wf not_assert_elim btrue_neq_bfalse dM-lift_wf set_subtype_base sq_stable__fset-member sq_stable__not subtype_rel-equal apply-fl-morph-id nh-comp-assoc nc-e'-1 nc-e-comp-nc-0 istype-void istype-cubical-type-at cube-set-restriction-when-id s-comp-nc-0 csm-ap-term-at istype-cubical-term nc-e'-lemma2 cubical-path-condition_wf cubical-path-1_wf dM1-sq-singleton-empty dM1_wf sq_stable__cubical-path-condition' cubical-path-condition'_wf face-lattice-property free-dist-lattice-with-constraints-property free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry dependent_set_memberEquality_alt sqequalHypSubstitution setElimination thin rename cut functionExtensionality instantiate introduction extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination setEquality intEquality imageMemberEquality baseClosed imageElimination inhabitedIsType equalityTransitivity lambdaFormation_alt equalityElimination productElimination productEquality cumulativity isectEquality equalityIstype promote_hyp universeEquality functionEquality hyp_replacement dependent_pairEquality_alt functionIsType closedConclusion sqequalBase applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].    (cfun-to-cop(Gamma;A;cop-to-cfun(cA))  =  cA)



Date html generated: 2020_05_20-PM-04_33_53
Last ObjectModification: 2020_04_21-AM-00_59_29

Theory : cubical!type!theory


Home Index