Nuprl Lemma : comp-op-to-comp-fun-inverse
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)].  (cfun-to-cop(Gamma;A;cop-to-cfun(cA)) = cA ∈ Gamma ⊢ CompOp(A))
Proof
Definitions occuring in Statement : 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp), 
comp-op-to-comp-fun: cop-to-cfun(cA), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
composition-op: Gamma ⊢ CompOp(A), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
squash: ↓T, 
interval-presheaf: 𝕀, 
names: names(I), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
comp-op-to-comp-fun: cop-to-cfun(cA), 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp), 
comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp), 
csm-composition: (comp)sigma, 
composition-term: comp cA [phi ⊢→ u] a0, 
cubical-term-at: u(a), 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
composition-uniformity: composition-uniformity(Gamma;A;comp), 
names-hom: I ⟶ J, 
nc-e': g,i=j, 
cube+: cube+(I;i), 
cc-adjoin-cube: (v;u), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
guard: {T}, 
cubical-type-at: A(a), 
pi1: fst(t), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
lattice-point: Point(l), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
DeMorgan-algebra: DeMorganAlgebra, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
pi2: snd(t), 
nh-id: 1, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nc-s: s, 
dM_inc: <x>, 
dminc: <i>, 
free-dl-inc: free-dl-inc(x), 
fset-singleton: {x}, 
cons: [a / b], 
context-map: <rho>, 
csm-comp: G o F, 
csm-ap: (s)x, 
compose: f o g, 
functor-arrow: arrow(F), 
cubical-type: {X ⊢ _}, 
csm-ap-type: (AF)s, 
subset-iota: iota, 
csm-ap-term: (t)s, 
subset-trans: subset-trans(I;J;f;x), 
nh-comp: g ⋅ f, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
dM-lift: dM-lift(I;J;f), 
cube-context-adjoin: X.A, 
face-presheaf: 𝔽, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
cubical-type-ap-morph: (u a f), 
face-type: 𝔽, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
nc-0: (i0), 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f), 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
empty-fset: {}, 
nil: [], 
lattice-0: 0, 
dM0: 0, 
nequal: a ≠ b ∈ T , 
dma-hom: dma-hom(dma1;dma2), 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0), 
rev_uimplies: rev_uimplies(P;Q), 
nc-1: (i1)
Lemmas referenced : 
cubical-path-0_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
sq_stable__composition-uniformity, 
composition-uniformity_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
interval-type-at, 
I_cube_pair_redex_lemma, 
dM_inc_wf, 
new-name_wf, 
trivial-member-add-name1, 
nh-id_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_rel_self, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-added-name, 
names_wf, 
istype-top, 
squash_wf, 
true_wf, 
istype-universe, 
nh-id-right, 
names-subtype, 
iff_weakening_equal, 
names-hom_wf, 
nc-e'_wf, 
cubical-type-at_wf, 
cube-set-restriction-id, 
nc-1_wf, 
cubical-type-ap-morph-id, 
cubical-term-equal, 
csm-ap-type-at, 
cubical-subset-I_cube, 
cube-set-restriction-comp, 
csm-ap-context-map, 
cubical-term-at_wf, 
context-map_wf_cubical-subset, 
interval-type-ap-morph, 
cube_set_restriction_pair_lemma, 
dM-lift_wf2, 
dM-lift-inc, 
nh-comp_wf, 
name-morph-satisfies_wf, 
face_lattice_wf, 
fl-morph-comp2, 
fl-morph_wf, 
int_subtype_base, 
name-morph-satisfies-comp, 
nc-e'-lemma3, 
csm-ap-restriction, 
csm-ap_wf, 
cubical-type-equal, 
subtype_rel_product, 
subtype_rel_universe1, 
subtype_rel_dep_function, 
equal_functionality_wrt_subtype_rel2, 
csm-ap-term_wf, 
subset-trans_wf, 
cube_set_map_wf, 
face-type-ap-morph, 
nc-0_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cube+_wf, 
cc-adjoin-cube_wf, 
cat-ob_wf, 
op-cat_wf, 
cube-cat_wf, 
cubical-type-ap-morph_wf, 
cc-adjoin-cube-restriction, 
formal-cube-restriction, 
dM0_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
interval-type-ap-inc, 
eq_int_eq_true, 
btrue_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
dM-lift_wf, 
set_subtype_base, 
sq_stable__fset-member, 
sq_stable__not, 
subtype_rel-equal, 
apply-fl-morph-id, 
nh-comp-assoc, 
nc-e'-1, 
nc-e-comp-nc-0, 
istype-void, 
istype-cubical-type-at, 
cube-set-restriction-when-id, 
s-comp-nc-0, 
csm-ap-term-at, 
istype-cubical-term, 
nc-e'-lemma2, 
cubical-path-condition_wf, 
cubical-path-1_wf, 
dM1-sq-singleton-empty, 
dM1_wf, 
sq_stable__cubical-path-condition', 
cubical-path-condition'_wf, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
functionExtensionality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
setEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
inhabitedIsType, 
equalityTransitivity, 
lambdaFormation_alt, 
equalityElimination, 
productElimination, 
productEquality, 
cumulativity, 
isectEquality, 
equalityIstype, 
promote_hyp, 
universeEquality, 
functionEquality, 
hyp_replacement, 
dependent_pairEquality_alt, 
functionIsType, 
closedConclusion, 
sqequalBase, 
applyLambdaEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].    (cfun-to-cop(Gamma;A;cop-to-cfun(cA))  =  cA)
Date html generated:
2020_05_20-PM-04_33_53
Last ObjectModification:
2020_04_21-AM-00_59_29
Theory : cubical!type!theory
Home
Index