Nuprl Lemma : equiv-path1-0
∀[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(A;B)}].  ((equiv-path1(G;A;B;f))[0(𝕀)] = A ∈ {G ⊢ _})
Proof
Definitions occuring in Statement : 
equiv-path1: equiv-path1(G;A;B;f), 
cubical-equiv: Equiv(T;A), 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
same-cubical-type: Gamma ⊢ A = B, 
subtype_rel: A ⊆r B, 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
true: True, 
squash: ↓T, 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
pi2: snd(t)
Lemmas referenced : 
equiv-path1-constraint, 
istype-cubical-term, 
cubical-equiv_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-type_wf, 
context-subset_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-or_wf, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
csm-face-type, 
context-subset-map, 
cc_snd_csm_id_adjoin_lemma, 
csm-interval-0, 
csm-face-or, 
csm-face-zero, 
csm-face-one, 
subset-cubical-type, 
face-zero-interval-0, 
sub_cubical_set_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
face-1-or, 
context-1-subset, 
equal_wf, 
istype-universe, 
csm-case-type, 
case-type-same1, 
cc-fst_wf_interval, 
csm-id-adjoin_wf-interval-0, 
csm-context-subset-subtype2, 
face-1_wf, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
context-subset-is-subset, 
subtype_rel_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
inhabitedIsType, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
Error :memTop, 
dependent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
universeEquality
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].    ((equiv-path1(G;A;B;f))[0(\mBbbI{})]  =  A)
Date html generated:
2020_05_20-PM-07_27_07
Last ObjectModification:
2020_04_28-PM-01_12_43
Theory : cubical!type!theory
Home
Index