Nuprl Lemma : case-type-same1
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[psi:{Gamma ⊢ _:𝔽}]. ∀[B:{Gamma, psi ⊢ _}].
  Gamma, phi ⊢ (if phi then A else B) = A
Proof
Definitions occuring in Statement : 
case-type: (if phi then A else B)
, 
same-cubical-type: Gamma ⊢ A = B
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
same-cubical-type: Gamma ⊢ A = B
, 
uimplies: b supposing a
, 
case-type: (if phi then A else B)
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
case-cube: case-cube(phi;A;B;I;rho)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
bfalse: ff
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
respects-equality: respects-equality(S;T)
, 
squash: ↓T
, 
cubical-type: {X ⊢ _}
Lemmas referenced : 
cubical-type-equal, 
cubical-type_wf, 
context-subset_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
I_cube_pair_redex_lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
fl-eq_wf, 
cubical-term-at_wf, 
lattice-1_wf, 
face_lattice_wf, 
eqtt_to_assert, 
assert-fl-eq, 
subtype_rel_self, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-type-at_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
names-hom_wf, 
iff_imp_equal_bool, 
btrue_wf, 
iff_functionality_wrt_iff, 
true_wf, 
iff_weakening_equal, 
istype-true, 
subset-cubical-term, 
context-subset-is-subset, 
cube-set-restriction_wf, 
face-type-at, 
respects-equality_weakening, 
squash_wf, 
istype-universe, 
face-term-at-restriction-eq-1, 
cubical-type-ap-morph_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
istype-cubical-type-at, 
cubical_type_ap_morph_pair_lemma, 
cubical_type_at_pair_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
equalityTransitivity, 
applyEquality, 
because_Cache, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
equalityIstype, 
productEquality, 
cumulativity, 
isectEquality, 
dependent_pairFormation_alt, 
promote_hyp, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
functionIsType, 
functionExtensionality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
\mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
    Gamma,  phi  \mvdash{}  (if  phi  then  A  else  B)  =  A
Date html generated:
2020_05_20-PM-03_08_33
Last ObjectModification:
2020_04_06-PM-00_52_14
Theory : cubical!type!theory
Home
Index