Nuprl Lemma : extend-face-term-uniqueness
∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[a,b:Point(face_lattice(I))].
  a = b ∈ Point(face_lattice(I)) 
  supposing a ≤ phi
  ∧ b ≤ phi
  ∧ (∀[g:{f:I ⟶ I| (phi f) = 1} ]. ((a)<g> = u(g) ∈ Point(face_lattice(I))))
  ∧ (∀[g:{f:I ⟶ I| (phi f) = 1} ]. ((b)<g> = u(g) ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
cubical-subset: I,psi, 
name-morph-satisfies: (psi f) = 1, 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
lattice-le: a ≤ b, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
cubical-subset: I,psi, 
cube-cat: CubeCat, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uimplies: b supposing a, 
prop: ℙ, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
names-hom: I ⟶ J, 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
name-morph-satisfies: (psi f) = 1, 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
so_apply: x[s], 
ext-eq: A ≡ B, 
order: Order(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q
Lemmas referenced : 
I_cube_pair_redex_lemma, 
cat_arrow_triple_lemma, 
lattice-le_wf, 
face_lattice_wf, 
uall_wf, 
names-hom_wf, 
name-morph-satisfies_wf, 
equal_wf, 
lattice-point_wf, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
cubical-term-at_wf, 
cubical-subset_wf, 
subtype_rel_self, 
I_cube_wf, 
face-presheaf_wf, 
face-type_wf, 
cubical-term_wf, 
small_cubical_set_subtype, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
lattice-le-order, 
bdd-distributive-lattice-subtype-lattice, 
face_lattice-le, 
lattice-1_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lattice-1-le-iff, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-hom-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
productEquality, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
setEquality, 
lambdaEquality, 
setElimination, 
rename, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[a,b:Point(face\_lattice(I))].
    a  =  b 
    supposing  a  \mleq{}  phi
    \mwedge{}  b  \mleq{}  phi
    \mwedge{}  (\mforall{}[g:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].  ((a)<g>  =  u(g)))
    \mwedge{}  (\mforall{}[g:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].  ((b)<g>  =  u(g)))
Date html generated:
2018_05_23-AM-11_12_45
Last ObjectModification:
2018_05_20-PM-08_17_00
Theory : cubical!type!theory
Home
Index