Nuprl Lemma : face-1-in-context-subset

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].  (phi 1(𝔽) ∈ {G, phi ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] context-subset: Gamma, phi all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a face-1: 1(𝔽) cubical-term-at: u(a) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] guard: {T} implies:  Q
Lemmas referenced :  I_cube_pair_redex_lemma I_cube_wf context-subset_wf fset_wf nat_wf cubical-term-equal face-type_wf subset-cubical-term context-subset-is-subset cubical-term_wf cubical_set_wf subtype_rel_self cubical-type-at_wf_face-type equal_functionality_wrt_subtype_rel2 lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionExtensionality sqequalHypSubstitution introduction extract_by_obid dependent_functionElimination thin Error :memTop,  hypothesis isectElimination hypothesisEquality applyEquality because_Cache independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry universeIsType instantiate setElimination rename lambdaEquality_alt productEquality cumulativity isectEquality independent_functionElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].    (phi  =  1(\mBbbF{}))



Date html generated: 2020_05_20-PM-03_06_49
Last ObjectModification: 2020_04_04-PM-05_23_20

Theory : cubical!type!theory


Home Index