Nuprl Lemma : face-fl-morph-id

[I:fset(ℕ)]. ∀[phi:𝔽(I)].  ((phi)<1> phi ∈ 𝔽(I))


Proof




Definitions occuring in Statement :  face-presheaf: 𝔽 fl-morph: <f> I_cube: A(I) nh-id: 1 fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  face-presheaf: 𝔽 all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] squash: T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_cube_pair_redex_lemma equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf apply-fl-morph-id iff_weakening_equal fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation applyEquality lambdaEquality imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity because_Cache independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:\mBbbF{}(I)].    ((phi)ə>  =  phi)



Date html generated: 2017_10_05-AM-01_15_13
Last ObjectModification: 2017_07_28-AM-09_31_52

Theory : cubical!type!theory


Home Index