Nuprl Lemma : face-forall-map

[G,H:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[s:H.𝕀 j⟶ G].  (s ∈ H, (∀ (phi)s).𝕀 j⟶ G, phi)


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q
Lemmas referenced :  cube-context-adjoin_wf interval-type_wf face-forall-type-subtype csm-ap-term_wf face-type_wf csm-face-type context-subset-map context-subset_wf face-forall_wf cube_set_map_subtype2 sub_cubical_set_transitivity cc-fst_wf context-adjoin-subset2 face-term-implies-subset face-forall-implies cube_set_map_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry applyEquality because_Cache independent_isectElimination independent_pairFormation universeIsType inhabitedIsType

Latex:
\mforall{}[G,H:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[s:H.\mBbbI{}  j{}\mrightarrow{}  G].    (s  \mmember{}  H,  (\mforall{}  (phi)s).\mBbbI{}  j{}\mrightarrow{}  G,  phi)



Date html generated: 2020_05_20-PM-03_06_27
Last ObjectModification: 2020_04_06-PM-07_32_05

Theory : cubical!type!theory


Home Index