Nuprl Lemma : face-forall-map
∀[G,H:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[s:H.𝕀 j⟶ G].  (s ∈ H, (∀ (phi)s).𝕀 j⟶ G, phi)
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
and: P ∧ Q
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
face-forall-type-subtype, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
context-subset-map, 
context-subset_wf, 
face-forall_wf, 
cube_set_map_subtype2, 
sub_cubical_set_transitivity, 
cc-fst_wf, 
context-adjoin-subset2, 
face-term-implies-subset, 
face-forall-implies, 
cube_set_map_wf, 
cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[G,H:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[s:H.\mBbbI{}  j{}\mrightarrow{}  G].    (s  \mmember{}  H,  (\mforall{}  (phi)s).\mBbbI{}  j{}\mrightarrow{}  G,  phi)
Date html generated:
2020_05_20-PM-03_06_27
Last ObjectModification:
2020_04_06-PM-07_32_05
Theory : cubical!type!theory
Home
Index