Nuprl Lemma : face-lattice-hom-is-id
∀I:fset(ℕ)
  ∀[h:Hom(face_lattice(I);face_lattice(I))]
    h = (λx.x) ∈ Hom(face_lattice(I);face_lattice(I)) 
    supposing ∀x:names(I). (((h (x=0)) = (x=0) ∈ Point(face_lattice(I))) ∧ ((h (x=1)) = (x=1) ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
fl1: (x=1), 
fl0: (x=0), 
face_lattice: face_lattice(I), 
names: names(I), 
bounded-lattice-hom: Hom(l1;l2), 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fl1: (x=1), 
face_lattice: face_lattice(I), 
fl0: (x=0), 
and: P ∧ Q, 
cand: A c∧ B, 
lattice-0: 0, 
record-select: r.x, 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-1: 1, 
fset-singleton: {x}, 
cons: [a / b], 
bounded-lattice-hom: Hom(l1;l2), 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
lattice-hom: Hom(l1;l2), 
guard: {T}, 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
face-lattice-hom-unique, 
names_wf, 
names-deq_wf, 
face-lattice_wf, 
face_lattice-deq_wf, 
face-lattice0_wf, 
face-lattice1_wf, 
lattice-0_wf, 
bdd-distributive-lattice_wf, 
lattice-1_wf, 
lattice-meet_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-join_wf, 
all_wf, 
face_lattice_wf, 
fl0_wf, 
fl1_wf, 
bounded-lattice-hom_wf, 
fset_wf, 
nat_wf, 
fl-meet-0-1, 
iff_weakening_equal, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
independent_pairFormation, 
because_Cache, 
dependent_set_memberEquality, 
productElimination, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}I:fset(\mBbbN{})
    \mforall{}[h:Hom(face\_lattice(I);face\_lattice(I))]
        h  =  (\mlambda{}x.x)  supposing  \mforall{}x:names(I).  (((h  (x=0))  =  (x=0))  \mwedge{}  ((h  (x=1))  =  (x=1)))
Date html generated:
2017_10_05-AM-01_13_09
Last ObjectModification:
2017_07_28-AM-09_30_44
Theory : cubical!type!theory
Home
Index