Nuprl Lemma : face-term-and-implies

[Gamma:j⊢]. ∀[phi,psi,phi',psi':{Gamma ⊢ _:𝔽}].
  (Gamma ⊢ ((phi ∧ psi)  (phi' ∧ psi'))) supposing (Gamma ⊢ (phi  phi') and Gamma ⊢ (psi  psi'))


Proof




Definitions occuring in Statement :  face-term-implies: Gamma ⊢ (phi  psi) face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt guard: {T}
Lemmas referenced :  face-and-eq-1 lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf face-and_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf nat_wf face-term-implies_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution lambdaFormation_alt extract_by_obid isectElimination thin hypothesisEquality dependent_functionElimination hypothesis productElimination independent_functionElimination independent_pairFormation equalityIstype universeIsType applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi,phi',psi':\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (Gamma  \mvdash{}  ((phi  \mwedge{}  psi)  {}\mRightarrow{}  (phi'  \mwedge{}  psi')))  supposing 
          (Gamma  \mvdash{}  (phi  {}\mRightarrow{}  phi')  and 
          Gamma  \mvdash{}  (psi  {}\mRightarrow{}  psi'))



Date html generated: 2020_05_20-PM-02_47_26
Last ObjectModification: 2020_04_04-PM-05_01_31

Theory : cubical!type!theory


Home Index