Nuprl Lemma : face-zero-and-one

[X:j⊢]. ∀[z:{X ⊢ _:𝕀}].  (((z=0) ∧ (z=1)) 0(𝔽) ∈ {X ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-zero: (i=0) face-one: (i=1) face-and: (a ∧ b) face-0: 0(𝔽) face-type: 𝔽 interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf cubical-term_wf face-type_wf face-and-com face-zero_wf face-one_wf face-0_wf iff_weakening_equal face-one-and-zero interval-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[z:\{X  \mvdash{}  \_:\mBbbI{}\}].    (((z=0)  \mwedge{}  (z=1))  =  0(\mBbbF{}))



Date html generated: 2020_05_20-PM-02_43_24
Last ObjectModification: 2020_04_04-PM-04_57_39

Theory : cubical!type!theory


Home Index