Nuprl Lemma : face-zero-as-face-one
∀[Gamma:j⊢]. ∀[i:{Gamma ⊢ _:𝕀}].  ((i=0) = (1-(i)=1) ∈ {Gamma ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-zero: (i=0), 
face-one: (i=1), 
face-type: 𝔽, 
interval-rev: 1-(r), 
interval-type: 𝕀, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
face-zero: (i=0), 
dM-to-FL: dM-to-FL(I;z), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
dm-neg: ¬(x), 
cubical-term-at: u(a), 
face-one: (i=1), 
interval-rev: 1-(r), 
dma-neg: ¬(x), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
btrue: tt, 
subtype_rel: A ⊆r B, 
cubical-term: {X ⊢ _:A}
Lemmas referenced : 
cubical-term-equal2, 
face-type_wf, 
face-zero_wf, 
face-one_wf, 
interval-rev_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term_wf, 
interval-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaFormation_alt, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
because_Cache, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[i:\{Gamma  \mvdash{}  \_:\mBbbI{}\}].    ((i=0)  =  (1-(i)=1))
Date html generated:
2020_05_20-PM-02_43_03
Last ObjectModification:
2020_04_04-PM-04_51_13
Theory : cubical!type!theory
Home
Index