Nuprl Lemma : face-zero-interval-1
∀[H:j⊢]. ((1(𝕀)=0) = 0(𝔽) ∈ {H ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-zero: (i=0), 
face-0: 0(𝔽), 
face-type: 𝔽, 
interval-1: 1(𝕀), 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
face-0: 0(𝔽), 
interval-1: 1(𝕀), 
face-zero: (i=0), 
cubical-term-at: u(a), 
dM-to-FL: dM-to-FL(I;z), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
dm-neg: ¬(x), 
dM1: 1, 
lattice-1: 1, 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
fset-singleton: {x}, 
cons: [a / b], 
nil: [], 
it: ⋅, 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
lattice-join: a ∨ b, 
opposite-lattice: opposite-lattice(L), 
so_lambda: λ2x y.t[x; y], 
lattice-meet: a ∧ b, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
lattice-fset-meet: /\(s), 
empty-fset: {}, 
lattice-0: 0, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
uimplies: b supposing a
Lemmas referenced : 
lattice-0_wf, 
face_lattice_wf, 
subtype_rel_self, 
cubical-type-at_wf_face-type, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
face-type_wf, 
face-zero_wf, 
interval-1_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
functionExtensionality, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :memTop, 
independent_isectElimination, 
universeIsType, 
instantiate
Latex:
\mforall{}[H:j\mvdash{}].  ((1(\mBbbI{})=0)  =  0(\mBbbF{}))
Date html generated:
2020_05_20-PM-02_43_55
Last ObjectModification:
2020_04_04-PM-04_58_02
Theory : cubical!type!theory
Home
Index