Nuprl Lemma : filling-function_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (filling-function{j:l, i:l}(Gamma;A) ∈ 𝕌{[i' j'']})


Proof




Definitions occuring in Statement :  filling-function: filling-function{j:l, i:l}(Gamma;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] filling-function: filling-function{j:l, i:l}(Gamma;A) member: t ∈ T subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g guard: {T}
Lemmas referenced :  cubical_set_wf cube_set_map_wf cube-context-adjoin_wf interval-type_wf cubical-term_wf face-type_wf thin-context-subset csm-ap-term_wf cubical_set_cumulativity-i-j csm-face-type cc-fst_wf csm-ap-type_wf subtype_rel_self context-subset_wf cubical-type-cumulativity2 constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 partial-term-0_wf cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionEquality cumulativity cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality_alt universeIsType universeEquality sqequalRule because_Cache Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (filling-function\{j:l,  i:l\}(Gamma;A)  \mmember{}  \mBbbU{}\{[i'  |  j'']\})



Date html generated: 2020_05_20-PM-04_40_34
Last ObjectModification: 2020_04_11-AM-10_48_26

Theory : cubical!type!theory


Home Index