Nuprl Lemma : filling-function_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (filling-function{j:l, i:l}(Gamma;A) ∈ 𝕌{[i' | j'']})
Proof
Definitions occuring in Statement : 
filling-function: filling-function{j:l, i:l}(Gamma;A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
filling-function: filling-function{j:l, i:l}(Gamma;A)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
guard: {T}
Lemmas referenced : 
cubical_set_wf, 
cube_set_map_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-term_wf, 
face-type_wf, 
thin-context-subset, 
csm-ap-term_wf, 
cubical_set_cumulativity-i-j, 
csm-face-type, 
cc-fst_wf, 
csm-ap-type_wf, 
subtype_rel_self, 
context-subset_wf, 
cubical-type-cumulativity2, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf-interval-0, 
partial-term-0_wf, 
cubical-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
functionEquality, 
cumulativity, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality_alt, 
universeIsType, 
universeEquality, 
sqequalRule, 
because_Cache, 
Error :memTop
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (filling-function\{j:l,  i:l\}(Gamma;A)  \mmember{}  \mBbbU{}\{[i'  |  j'']\})
Date html generated:
2020_05_20-PM-04_40_34
Last ObjectModification:
2020_04_11-AM-10_48_26
Theory : cubical!type!theory
Home
Index