Nuprl Lemma : fl-morph-fset-meet
∀[A,B:fset(ℕ)]. ∀[g:A ⟶ B]. ∀[x:fset(Point(face_lattice(B)))].  ((/\(x))<g> = /\(<g>"(x)) ∈ Point(face_lattice(A)))
Proof
Definitions occuring in Statement : 
fl-morph: <f>
, 
face_lattice-deq: face_lattice-deq()
, 
face_lattice: face_lattice(I)
, 
names-hom: I ⟶ J
, 
fset-image: f"(s)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
lattice-fset-meet: /\(s)
, 
lattice-point: Point(l)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
lattice-hom-fset-meet, 
face_lattice_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
face_lattice-deq_wf, 
fl-morph_wf, 
fset_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
names-hom_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
because_Cache, 
universeIsType, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
independent_isectElimination, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[x:fset(Point(face\_lattice(B)))].    ((/\mbackslash{}(x))<g>  =  /\mbackslash{}(<g>"(x)))
Date html generated:
2020_05_20-PM-01_44_22
Last ObjectModification:
2019_12_27-AM-00_17_21
Theory : cubical!type!theory
Home
Index