Nuprl Lemma : fl-morph-fset-meet

[A,B:fset(ℕ)]. ∀[g:A ⟶ B]. ∀[x:fset(Point(face_lattice(B)))].  ((/\(x))<g> /\(<g>"(x)) ∈ Point(face_lattice(A)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice-deq: face_lattice-deq() face_lattice: face_lattice(I) names-hom: I ⟶ J fset-image: f"(s) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T lattice-fset-meet: /\(s) lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  lattice-hom-fset-meet face_lattice_wf bdd-distributive-lattice-subtype-bdd-lattice face_lattice-deq_wf fl-morph_wf fset_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf names-hom_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule because_Cache universeIsType instantiate lambdaEquality_alt productEquality cumulativity isectEquality independent_isectElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[x:fset(Point(face\_lattice(B)))].    ((/\mbackslash{}(x))<g>  =  /\mbackslash{}(<g>"(x)))



Date html generated: 2020_05_20-PM-01_44_22
Last ObjectModification: 2019_12_27-AM-00_17_21

Theory : cubical!type!theory


Home Index