Nuprl Lemma : fl-morph-restriction
∀[I,J,K:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:J ⟶ K]. ∀[phi:𝔽(K)].  ((g(phi))<f> = g ⋅ f(phi) ∈ 𝔽(I))
Proof
Definitions occuring in Statement : 
face-presheaf: 𝔽, 
fl-morph: <f>, 
cube-set-restriction: f(s), 
I_cube: A(I), 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
prop: ℙ, 
squash: ↓T, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
cube-set-restriction: f(s), 
pi2: snd(t), 
face-presheaf: 𝔽, 
true: True
Lemmas referenced : 
cube-set-restriction-comp, 
face-presheaf_wf2, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
I_cube_wf, 
cube-set-restriction_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
imageElimination, 
isectElimination, 
equalityTransitivity, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:J  {}\mrightarrow{}  K].  \mforall{}[phi:\mBbbF{}(K)].    ((g(phi))<f>  =  g  \mcdot{}  f(phi))
Date html generated:
2020_05_20-PM-01_44_57
Last ObjectModification:
2020_04_19-PM-01_55_27
Theory : cubical!type!theory
Home
Index