Nuprl Lemma : fl-s-fl1

[I:fset(ℕ)]. ∀[x:names(I)].  (((x=1))<s> (x=1) ∈ Point(face_lattice(I+x)))


Proof




Definitions occuring in Statement :  fl-morph: <f> fl1: (x=1) face_lattice: face_lattice(I) nc-s: s add-name: I+i names: names(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: names: names(I) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q nc-s: s
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf add-name_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl-morph-fl1 nc-s_wf f-subset-add-name fl1_wf names-subtype iff_weakening_equal dM-to-FL-inc names_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality setElimination rename sqequalRule instantiate productEquality cumulativity because_Cache independent_isectElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (((x=1))<s>  =  (x=1))



Date html generated: 2017_10_05-AM-01_14_01
Last ObjectModification: 2017_07_28-AM-09_31_19

Theory : cubical!type!theory


Home Index