Nuprl Lemma : glue-term-1'

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:T}]. ∀[A,a:Top].
  Gamma ⊢ glue [phi ⊢→ t] t ∈ {Gamma ⊢ _:T} supposing phi 1(𝔽) ∈ {Gamma ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  glue-term: glue [phi ⊢→ t] a face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a same-cubical-term: X ⊢ u=v:A true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  glue-term-constraint thin-context-subset context-subset-term-subtype face-1_wf istype-top istype-cubical-term cubical-type_wf face-type_wf cubical_set_wf subset-cubical-term context-subset_wf context-1-subset sub_cubical_set_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule equalityIstype inhabitedIsType universeIsType instantiate independent_isectElimination because_Cache natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:T\}].  \mforall{}[A,a:Top].
    Gamma  \mvdash{}  glue  [phi  \mvdash{}\mrightarrow{}  t]  a  =  t  supposing  phi  =  1(\mBbbF{})



Date html generated: 2020_05_20-PM-05_44_34
Last ObjectModification: 2020_04_21-PM-07_03_35

Theory : cubical!type!theory


Home Index