Nuprl Lemma : is-equiv-witness_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[c:{X.A ⊢ _:Fiber((w)p;q)}].
[p:{X.A.Fiber((w)p;q) ⊢ _:(Path_(Fiber((w)p;q))p (c)p q)}].
  (is-equiv-witness(X;A;c;p) ∈ {X ⊢ _:IsEquiv(T;A;w)})


Proof




Definitions occuring in Statement :  is-equiv-witness: is-equiv-witness(G;A;c;p) is-cubical-equiv: IsEquiv(T;A;w) cubical-fiber: Fiber(w;a) path-type: (Path_A b) cubical-fun: (A ⟶ B) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] is-equiv-witness: is-equiv-witness(G;A;c;p) is-cubical-equiv: IsEquiv(T;A;w) member: t ∈ T subtype_rel: A ⊆B squash: T all: x:A. B[x] true: True
Lemmas referenced :  contr-witness_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical-fiber_wf csm-ap-term_wf cubical-term_wf csm-cubical-fun cc-fst_wf cubical-lambda_wf contractible-type_wf csm-ap-type_wf path-type_wf cc-snd_wf cubical_set_cumulativity-i-j cubical-fun_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry hyp_replacement universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[c:\{X.A  \mvdash{}  \_:Fiber((w)p;q)\}].
\mforall{}[p:\{X.A.Fiber((w)p;q)  \mvdash{}  \_:(Path\_(Fiber((w)p;q))p  (c)p  q)\}].
    (is-equiv-witness(X;A;c;p)  \mmember{}  \{X  \mvdash{}  \_:IsEquiv(T;A;w)\})



Date html generated: 2020_05_20-PM-03_25_55
Last ObjectModification: 2020_04_07-PM-04_49_44

Theory : cubical!type!theory


Home Index