Nuprl Lemma : is-equiv-witness_wf
∀[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[c:{X.A ⊢ _:Fiber((w)p;q)}].
∀[p:{X.A.Fiber((w)p;q) ⊢ _:(Path_(Fiber((w)p;q))p (c)p q)}].
  (is-equiv-witness(X;A;c;p) ∈ {X ⊢ _:IsEquiv(T;A;w)})
Proof
Definitions occuring in Statement : 
is-equiv-witness: is-equiv-witness(G;A;c;p)
, 
is-cubical-equiv: IsEquiv(T;A;w)
, 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
cubical-fun: (A ⟶ B)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
is-equiv-witness: is-equiv-witness(G;A;c;p)
, 
is-cubical-equiv: IsEquiv(T;A;w)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
Lemmas referenced : 
contr-witness_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical-fiber_wf, 
csm-ap-term_wf, 
cubical-term_wf, 
csm-cubical-fun, 
cc-fst_wf, 
cubical-lambda_wf, 
contractible-type_wf, 
csm-ap-type_wf, 
path-type_wf, 
cc-snd_wf, 
cubical_set_cumulativity-i-j, 
cubical-fun_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[c:\{X.A  \mvdash{}  \_:Fiber((w)p;q)\}].
\mforall{}[p:\{X.A.Fiber((w)p;q)  \mvdash{}  \_:(Path\_(Fiber((w)p;q))p  (c)p  q)\}].
    (is-equiv-witness(X;A;c;p)  \mmember{}  \{X  \mvdash{}  \_:IsEquiv(T;A;w)\})
Date html generated:
2020_05_20-PM-03_25_55
Last ObjectModification:
2020_04_07-PM-04_49_44
Theory : cubical!type!theory
Home
Index