Nuprl Lemma : isdM0_wf

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (isdM0(x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  isdM0: isdM0(x) dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] top: Top isdM0: isdM0(x) fset-null: fset-null(s)
Lemmas referenced :  lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf nat_wf dM-point fset-null_wf names_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality applyEquality instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache isect_memberEquality voidElimination voidEquality setElimination rename unionEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (isdM0(x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_18-AM-11_56_43
Last ObjectModification: 2015_12_28-PM-03_08_45

Theory : cubical!type!theory


Home Index