Nuprl Lemma : isdM0_wf
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (isdM0(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
isdM0: isdM0(x)
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
top: Top
, 
isdM0: isdM0(x)
, 
fset-null: fset-null(s)
Lemmas referenced : 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf, 
dM-point, 
fset-null_wf, 
names_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
unionEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (isdM0(x)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_18-AM-11_56_43
Last ObjectModification:
2015_12_28-PM-03_08_45
Theory : cubical!type!theory
Home
Index