Nuprl Lemma : nh-comp-cancel
∀I,J,K:fset(ℕ). ∀f:I ⟶ J. ∀g,h:J ⟶ K. ∀x:names(K).
  (g ⋅ f x) = (h ⋅ f x) ∈ Point(dM(I)) supposing (g x) = (h x) ∈ Point(dM(J))
Proof
Definitions occuring in Statement : 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
dM: dM(I)
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nh-comp: g ⋅ f
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
compose: f o g
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
deq: EqDecider(T)
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
bool: 𝔹
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
names-hom: I ⟶ J
, 
subtype_rel: A ⊆r B
, 
dM: dM(I)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
free-dma-lift_wf, 
names_wf, 
names-deq_wf, 
free-DeMorgan-algebra_wf, 
free-dml-deq_wf, 
subtype_rel_self, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionExtensionality, 
applyEquality, 
inhabitedIsType, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
independent_isectElimination, 
cumulativity, 
setElimination, 
rename
Latex:
\mforall{}I,J,K:fset(\mBbbN{}).  \mforall{}f:I  {}\mrightarrow{}  J.  \mforall{}g,h:J  {}\mrightarrow{}  K.  \mforall{}x:names(K).    (g  \mcdot{}  f  x)  =  (h  \mcdot{}  f  x)  supposing  (g  x)  =  (h  x)
Date html generated:
2019_11_04-PM-05_31_18
Last ObjectModification:
2018_11_08-AM-11_03_43
Theory : cubical!type!theory
Home
Index