Nuprl Lemma : nh-comp-cancel

I,J,K:fset(ℕ). ∀f:I ⟶ J. ∀g,h:J ⟶ K. ∀x:names(K).
  (g ⋅ x) (h ⋅ x) ∈ Point(dM(I)) supposing (g x) (h x) ∈ Point(dM(J))


Proof




Definitions occuring in Statement :  nh-comp: g ⋅ f names-hom: I ⟶ J dM: dM(I) names: names(I) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g member: t ∈ T uall: [x:A]. B[x] deq: EqDecider(T) lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bool: 𝔹 iff: ⇐⇒ Q and: P ∧ Q implies:  Q assert: b rev_implies:  Q names-hom: I ⟶ J subtype_rel: A ⊆B dM: dM(I) DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: guard: {T} so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  free-dma-lift_wf names_wf names-deq_wf free-DeMorgan-algebra_wf free-dml-deq_wf subtype_rel_self lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf names-hom_wf fset_wf nat_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis because_Cache functionExtensionality applyEquality inhabitedIsType equalityIsType1 equalityTransitivity equalitySymmetry independent_functionElimination universeIsType instantiate lambdaEquality_alt productEquality independent_isectElimination cumulativity setElimination rename

Latex:
\mforall{}I,J,K:fset(\mBbbN{}).  \mforall{}f:I  {}\mrightarrow{}  J.  \mforall{}g,h:J  {}\mrightarrow{}  K.  \mforall{}x:names(K).    (g  \mcdot{}  f  x)  =  (h  \mcdot{}  f  x)  supposing  (g  x)  =  (h  x)



Date html generated: 2019_11_04-PM-05_31_18
Last ObjectModification: 2018_11_08-AM-11_03_43

Theory : cubical!type!theory


Home Index