Nuprl Lemma : nh-comp-nc-m-eq3

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ I+i} ].  (s,i=j ⋅ (j0) m(i;j) ⋅ (j0) ∈ I+i ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-m: m(i;j) nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: uimplies: supposing a all: x:A. B[x] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf names-hom_wf add-name_wf nc-m-nc-0 nh-comp_wf nc-0_wf nc-e'_wf nc-s_wf f-subset-add-name iff_weakening_equal nc-e'-lemma2 set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis universeEquality setElimination rename because_Cache independent_isectElimination dependent_functionElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination intEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  ].    (s,i=j  \mcdot{}  (j0)  =  m(i;j)  \mcdot{}  (j0))



Date html generated: 2017_10_05-AM-01_04_44
Last ObjectModification: 2017_07_28-AM-09_27_09

Theory : cubical!type!theory


Home Index