Nuprl Lemma : path-type-q-csm-adjoin

[X,H:j⊢]. ∀[s:H j⟶ X]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[u:{H ⊢ _:(A)s}].
  (((Path_(A)p (a)p q))(s;u) (H ⊢ Path_(A)s (a)s u) ∈ {H ⊢ _})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: all: x:A. B[x] subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-type: {X ⊢ _} cc-fst: p csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe cubical-type_wf csm-path-type cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-adjoin_wf subtype_rel_self cube_set_map_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf path-type_wf iff_weakening_equal cubical-term_wf cubical-type-cumulativity2 cubical_set_wf cc-snd-csm-adjoin subset-cubical-term2 sub_cubical_set_self csm_ap_term_fst_adjoin_lemma csm-ap-type-fst-adjoin
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality dependent_functionElimination because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination inhabitedIsType setElimination rename Error :memTop,  isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[X,H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[u:\{H  \mvdash{}  \_:(A)s\}].
    (((Path\_(A)p  (a)p  q))(s;u)  =  (H  \mvdash{}  Path\_(A)s  (a)s  u))



Date html generated: 2020_05_20-PM-03_15_55
Last ObjectModification: 2020_04_06-PM-06_28_17

Theory : cubical!type!theory


Home Index