Nuprl Lemma : rev-rev-type-line
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}].  (((A)-)- = A ∈ {Gamma.𝕀 ⊢ _})
Proof
Definitions occuring in Statement : 
rev-type-line: (A)-, 
interval-type: 𝕀, 
cube-context-adjoin: X.A, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
cubical-type: {X ⊢ _}, 
rev-type-line: (A)-, 
cc-snd: q, 
interval-rev: 1-(r), 
cc-fst: p, 
csm-adjoin: (s;u), 
csm-ap-type: (AF)s, 
cubical-term-at: u(a), 
csm-ap: (s)x, 
pi1: fst(t), 
pi2: snd(t), 
cube-context-adjoin: X.A, 
all: ∀x:A. B[x], 
cc-adjoin-cube: (v;u), 
squash: ↓T, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
cubical-type-at: A(a), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
interval-presheaf: 𝕀, 
lattice-point: Point(l), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
cubical-type-equal2, 
rev-type-line_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
I_cube_pair_redex_lemma, 
cc-adjoin-cube_wf, 
DeMorgan-algebra-laws, 
dM_wf, 
subtype_rel_self, 
lattice-point_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
subtype_rel-equal, 
dma-neg_wf, 
cubical-type-at_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
instantiate, 
universeIsType, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
setElimination, 
rename, 
productElimination, 
dependent_pairEquality_alt, 
functionExtensionality, 
applyEquality, 
functionIsType, 
dependent_functionElimination, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
productEquality, 
cumulativity, 
isectEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
hyp_replacement, 
universeEquality, 
independent_functionElimination, 
lambdaFormation_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].    (((A)-)-  =  A)
Date html generated:
2020_05_20-PM-04_17_33
Last ObjectModification:
2020_04_13-PM-00_54_00
Theory : cubical!type!theory
Home
Index