Nuprl Lemma : same-cubical-type-by-cases

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A,B:{Gamma, (phi ∨ psi) ⊢ _}].
  (Gamma, (phi ∨ psi) ⊢ B) supposing (Gamma, phi ⊢ and Gamma, psi ⊢ B)


Proof




Definitions occuring in Statement :  same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-or: (a ∨ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T same-cubical-type: Gamma ⊢ B all: x:A. B[x] context-subset: Gamma, phi face-or: (a ∨ b) cubical-term-at: u(a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] iff: ⇐⇒ Q implies:  Q or: P ∨ Q squash: T true: True guard: {T} rev_implies:  Q
Lemmas referenced :  cubical-type-equal3 context-subset_wf face-or_wf I_cube_pair_redex_lemma face_lattice-1-join-irreducible cubical-term-at_wf face-type_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf I_cube_wf fset_wf nat_wf istype-cubical-type-at names-hom_wf same-cubical-type_wf context-subset-subtype-or context-subset-subtype-or2 cubical-type_wf cubical-term_wf cubical_set_wf cubical-type-at_wf squash_wf true_wf cube_set_restriction_pair_lemma cube-set-restriction_wf istype-universe face-term-at-restriction-eq-1 lattice-1_wf iff_weakening_equal cubical-type-ap-morph_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination lambdaFormation_alt dependent_functionElimination Error :memTop,  setElimination rename sqequalRule applyEquality instantiate lambdaEquality_alt productEquality cumulativity isectEquality universeIsType productElimination independent_functionElimination unionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt equalityIstype equalityTransitivity equalitySymmetry imageElimination natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality universeEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,B:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_\}].
    (Gamma,  (phi  \mvee{}  psi)  \mvdash{}  A  =  B)  supposing  (Gamma,  phi  \mvdash{}  A  =  B  and  Gamma,  psi  \mvdash{}  A  =  B)



Date html generated: 2020_05_20-PM-03_01_31
Last ObjectModification: 2020_04_04-PM-05_16_35

Theory : cubical!type!theory


Home Index