Nuprl Lemma : section-iota_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[a:A(rho)]. ∀[psi:𝔽(I)].
  (section-iota(Gamma;A;I;rho;a) ∈ {I,psi ⊢ _:((A)<rho>)iota})


Proof




Definitions occuring in Statement :  section-iota: section-iota(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 context-map: <rho> I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T section-iota: section-iota(Gamma;A;I;rho;a) subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  csm-ap-term_wf cubical-subset_wf formal-cube_wf csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 context-map_wf subset-iota_wf canonical-section_wf I_cube_wf face-presheaf_wf2 istype-cubical-type-at fset_wf nat_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality dependent_functionElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[a:A(rho)].  \mforall{}[psi:\mBbbF{}(I)].
    (section-iota(Gamma;A;I;rho;a)  \mmember{}  \{I,psi  \mvdash{}  \_:((A)<rho>)iota\})



Date html generated: 2020_05_20-PM-02_32_58
Last ObjectModification: 2020_04_03-PM-08_43_19

Theory : cubical!type!theory


Home Index