Nuprl Lemma : section-iota_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[a:A(rho)]. ∀[psi:𝔽(I)].
  (section-iota(Gamma;A;I;rho;a) ∈ {I,psi ⊢ _:((A)<rho>)iota})
Proof
Definitions occuring in Statement : 
section-iota: section-iota(Gamma;A;I;rho;a)
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
context-map: <rho>
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
section-iota: section-iota(Gamma;A;I;rho;a)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
csm-ap-term_wf, 
cubical-subset_wf, 
formal-cube_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
context-map_wf, 
subset-iota_wf, 
canonical-section_wf, 
I_cube_wf, 
face-presheaf_wf2, 
istype-cubical-type-at, 
fset_wf, 
nat_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[a:A(rho)].  \mforall{}[psi:\mBbbF{}(I)].
    (section-iota(Gamma;A;I;rho;a)  \mmember{}  \{I,psi  \mvdash{}  \_:((A)<rho>)iota\})
Date html generated:
2020_05_20-PM-02_32_58
Last ObjectModification:
2020_04_03-PM-08_43_19
Theory : cubical!type!theory
Home
Index