Nuprl Lemma : sigma-elim-equality-rule2

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[T:{X.Σ B ⊢ _}]. ∀[t1:{X.A.B ⊢ _:(T)SigmaUnElim}]. ∀[t2:{X.Σ B ⊢ _:T}].
  (t1)SigmaElim t2 ∈ {X.Σ B ⊢ _:T} supposing t1 (t2)SigmaUnElim ∈ {X.A.B ⊢ _:(T)SigmaUnElim}


Proof




Definitions occuring in Statement :  sigma-unelim-csm: SigmaUnElim sigma-elim-csm: SigmaElim cubical-sigma: Σ B cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cubical-sigma: Σ B presheaf-sigma: Σ B cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x sigma-unelim-csm: SigmaUnElim sigma-unelim-pscm: SigmaUnElim csm-ap-term: (t)s pscm-ap-term: (t)s sigma-elim-csm: SigmaElim sigma-elim-pscm: SigmaElim
Lemmas referenced :  ps-sigma-elim-equality-rule2 cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[T:\{X.\mSigma{}  A  B  \mvdash{}  \_\}].  \mforall{}[t1:\{X.A.B  \mvdash{}  \_:(T)SigmaUnElim\}].
\mforall{}[t2:\{X.\mSigma{}  A  B  \mvdash{}  \_:T\}].
    (t1)SigmaElim  =  t2  supposing  t1  =  (t2)SigmaUnElim



Date html generated: 2020_05_20-PM-02_29_05
Last ObjectModification: 2020_04_03-PM-08_39_24

Theory : cubical!type!theory


Home Index