Nuprl Lemma : subset-iota-is-id

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[v:{H, phi ⊢ _}].  (v (v)iota ∈ {H, phi ⊢ _})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-type: {X ⊢ _} subset-iota: iota csm-ap-type: (AF)s csm-ap: (s)x and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  cubical-type_wf context-subset_wf cubical-term_wf face-type_wf cubical_set_wf cubical-type-equal I_cube_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf eta_conv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate independent_isectElimination setElimination rename productElimination sqequalRule dependent_pairEquality_alt lambdaEquality_alt applyEquality because_Cache functionIsType functionExtensionality_alt equalitySymmetry cumulativity universeEquality functionExtensionality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[v:\{H,  phi  \mvdash{}  \_\}].    (v  =  (v)iota)



Date html generated: 2020_05_20-PM-04_08_24
Last ObjectModification: 2020_04_10-AM-03_50_05

Theory : cubical!type!theory


Home Index