Nuprl Lemma : subtype-face-presheaf-point
∀[I:fset(ℕ)]. (Point(face_lattice(I)) ⊆r 𝔽(I))
Proof
Definitions occuring in Statement : 
face-presheaf: 𝔽, 
face_lattice: face_lattice(I), 
I_cube: A(I), 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: functor-ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_self, 
fset_wf, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productEquality, 
lambdaEquality, 
axiomEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  (Point(face\_lattice(I))  \msubseteq{}r  \mBbbF{}(I))
Date html generated:
2016_05_18-PM-00_16_23
Last ObjectModification:
2015_12_28-PM-02_59_56
Theory : cubical!type!theory
Home
Index