Nuprl Lemma : unit-pathtype

[G:j⊢]. ∀a,b:{G ⊢ _:Path(1)}.  (a b ∈ {G ⊢ _:Path(1)})


Proof




Definitions occuring in Statement :  pathtype: Path(A) cubical-unit: 1 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a cubical-term: {X ⊢ _:A} pathtype: Path(A) cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cubical-unit: 1 discrete-cubical-type: discr(T) unit: Unit implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] sq_stable: SqStable(P) squash: T
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-term-equal pathtype_wf cubical-unit_wf cubical-term_wf cubical_set_wf cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma names-hom_wf istype-cubical-type-at cube-set-restriction_wf interval-type_wf cubical-type-ap-morph_wf nh-comp_wf subtype_rel-equal cubical-type-at_wf subtype_rel_self unit_wf2 equal-unit sq_stable__all equal_wf sq_stable__equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity equalitySymmetry independent_isectElimination inhabitedIsType universeIsType instantiate sqequalRule lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies setElimination rename Error :memTop,  dependent_set_memberEquality_alt functionIsType because_Cache equalityIstype applyEquality independent_functionElimination functionEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}a,b:\{G  \mvdash{}  \_:Path(1)\}.    (a  =  b)



Date html generated: 2020_05_20-PM-03_34_36
Last ObjectModification: 2020_04_06-PM-06_59_17

Theory : cubical!type!theory


Home Index